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ABSTRACT

Isolated systems of many particles often appear to behave irreversibly. though
they are in principle dynamically reversible. In some cases this reversibility
can be made evident in ‘echo’ phenomena. in which the system is literally
restored to a dynamical statc which existed in the past. Whether such echoes
are in principle possible for all isolated systems is not known. However. they
do not require the absence of interactions among the particles. Thus the
inhomogeneous and ‘magic sandwich’ echoes are aspects of the same
phcnomenon.

I. INTRODUCTION

The spin echo! tends to astonish us when we first encounter it : a transverse
magnetization seems to appear spontaneously ‘out of nowhere’ as if Maxwell’s
demon had been at work. Of course there is no cause for alarm; the pheno-
menon is fully and easily understood. However, the fact that the spins
behave independently in this experiment, so that its analysis can be carried
out in terms of the dynamical behaviour of a single representative spin, has
suggested to some that this feature is indispensable to the production of
echoes, which would then in principle be impossible in a ‘genuine’ many-
body system of interacting particles. The fact that they are possible in both
principle and practice is made clear by recent experiments> * on the dipole-
dipole coupled nuclear spins in solids, based on special properties of coupled
dipoles in strong external fields*~®. Therefore it is appropriate to discuss
once again the role of echo phenomena vis-a-vis thermodynamics’~®. The
problem is more than a century old, and we do not claim anything new in
what follows. But the fact that it has been a subject of recurring discussion
for such a long time shows that our intuitions about the behaviour of many-
body systems have a persistent susceptibility to error, and that occasional
pedagogical reexamination may be a good thing.

In the following section we discuss the essential general features of echo
phenomena as a general way of conceptualizing the dynamical reversibility
of isolated systems. The next section describes the technical features of the
inhomogeneous spin echoes from this point of view. Applications of homo-
geneous echoes to solid state physics and chemistry are discussed by
Pines et al.'® in another paper in this Symposium.
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II. LOSCHMIDT’S PARADOX AND LOSCHMIDT’S DEMON

A system of spins of long T; undergoing a Bloch decay is an example of
an isolated system (fixed N, V, E). So is that favourite system of kinetic
theorists, the gas in an insulating container with perfectly reflecting, rigid
walls. Does such a system spontaneously move toward a condition of
thermodynamic equilibrium? The answer depends largely on one’s definition
of equilibrium. In classical statistical thermodynamics one would associate
the equilibrium system with a microcanonical ensemble made up of systems
having the prescribed values of N, ¥, and E but otherwise being completely
unbiased in their dynamical states {p;...qsy}. That is, the density p of
representative points in the 6 N-dimensional I'-space is uniform on the proper
constant energy surface.’ Once such a situation exists it can never change,
since the right hand side of the Liouville equation

dp
5 = P 1)
vanishes. A similar relation holds quantum-mechanically.

By the same token, that situation can never have been reached from a
condition of nonequilibrium; the dynamical laws obeyed by the particles
are inherently time-reversible. Properly, a system known to have been out
of equilibrium should be discussed in terms of an ensemble constrained not
only in (N, V, E) but also by whatever knowledge we have of the initial state.
Such an ensemble also develops according to equation 1, but p never reaches
exactly the microcanonical form. The additional constraints imposed neces-
sarily mean that it occupies a smaller volume in I'-space than the full
microcanonical ensemble, and Liouville’s theorem tells us that that volume
does not change with time.

Does this mean that one cannot apply equilibrium thermodynamics to
an isolated system? Not at all. Experience tells us that nearly all macroscopic
properties of such systems approach the values that are calculated on the
basis of the microcanonical ensemble. The ensemble density becomes
uniform in a coarse-grained sense'!, and ordinary phase-space averages fail
to detect its lack of complete uniformity. While the general question of
which properties approach their equilibrium values at what rates is still an
active subject of research, we know that a system which displays equilibrium
values for several observables is extremely likely to do so for others as well,
regardless of its previous history of nonequilibrium.

Yet this is not an absolute guarantee, and failure to keep this in mind
can lead to the failures of intuition mentioned earlier. In fact the time-
development of isolated systems obeys the reversible laws of classical or
quantum mechanics, despite the almost overwhelming impression of irre-
versible approach to equilibrium they present to our senses. This confronta-
tion has been called Loschmidt’s paradox® '?, and is traditionally stated in
the context of the kinetic theory of gases : a gas is known to expand irreversibly
to fill its container; yet a simultaneous reversal of the velocities of all the
molecules would result in a reversal of this process (Umkehreinwand) in
equally good accord with mechanical laws as the expansion itself.

It is convenient to discuss such events in terms of a Loschmidt demon,
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named by analogy with Maxwell’s but having quite fundamentally different
powers. For our purposes we distinguish them as follows:

Maxwell’s demon makes a series of choices on a molecular level which
ultimately result in bringing the system into a desired state. For example he
can observe molecules approaching an aperture between two halves of a
container and, by operating a shutter, can eventually segregate all of the gas
into one compartment. He can do so irrespective of the prior history of
the system, even if it was initially in ‘true’ equilibriumt.

Loschmidt’s demon, by macroscopic manipulations alone, returns the
system to the same dynamical state {p, ...q3y} Which it possessed a pre-
scribed time T earlier. He need not know what that state was but must know
the Hamiltonian of the system. Thereafter the system will of course spon-
taneously reenact its dynamical history. If at some time during the interval
T the system had been recognizably out of equilibrium, the nonequilibrium
behaviour will recur as an echo.

A single velocity reversal as envisioned by Loschmidt does not accomplish
this, inasmuch as it results in a retracing of a configurational history with
mirrored momenta. Loschmidt’s demon must perform two such reversals.
The chain of events is depicted in Figure I, which shows a projection of the

Xj

N
b

Figure 1. History of x and p, for two of the molecules of a gas. Two successive velocity
reversals (open circles) result in recovery of a dynamical state from the past.

full I space onto the x coordinate and its conjugate momentum for two of
the molecules of a gas. The gas is imagined to begin condensed on the plane
x = 0, symbolized by the squares for molecules 1 and 2. In the course of
time the two points move along complicated paths under the influence of
all the intermolecular forces, reaching the points denoted by open circles
at the same instant. The velocities are then instantaneously reversed. There-
after the gas develops backward in configuration space until a chosen
instant denoted by the solid circles, whereupon the second velocity reversal

t Note that there is nothing physically impossible about this. In fact. if the demon has the
same temperaturc as the gas, information theory shows that he must necessarily do as much
work in decreasing the cntropy of the gas as is required by the second law of thermodynamics.
¢f. L. Szilard. Z. Physik 53. 840 (1929). From this point of view the second law amounts to a
forswearing of microscopic manipulations on systems to be described thermodynamically.
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is performed. Shortly thereafter both points simultaneously reach the same
locations they had at the beginning of the experiment. Note that the overall
history involves one instant (squares) displaying nonequilibrium behaviour,
as well as others (triangles) having no remarkable properties.

It might be imagined that Loschmidt’s demon could never accomplish
a reversal of velocities by macroscopic means alone, without knowledge of
the microscopic state. Hahn'? has suggested a thought experiment which
shows how to do it for the special case of a gas of charged particles, all
having the same value of |e/m|, in two dimensions. Figure 2 shows the path
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Figure 2. Proposed reversal of velocities in a two-dimensional electron gas.!?

of a representative particle in the xy plane. At t = 0 a strong magnetic
field is applied in the z direction, inducing a cyclotron precession whose
frequency is . = eH/2mc independent of particle velocity. (The trajectories
of two particles of different speeds are shown.) At t = 3nmc/eH, when 2 of a
cyclotron orbit has been executed, the field is reversed for a further time
nmc/eH, reversing the sense of the precession, and then shut off. The particles
now retrace their original paths. Interactions among the particles will
become unimportant if H is made sufficiently large. This experiment of
course leaves open the interesting question of whether a Loschmidt demon
is realizable for other kinds of systems, or of what conditions they must
satisfy. As we shall see, he at least exists not only for the two-dimensional
charged gas but for certain spin systems in strong external fields as well.
One could also ask whether more than one distinct Loschmidt demon
exists for a given system, the differences being in the path in phase space by
which the system is brought to an earlier dynamical state. In particular,
consider a demon who is able instantaneously to reverse the sign of the
Hamiltonian 4 (for example by changing the signs of the masses (!) and
interaction potentials of all the particles). A system thus reversed would
retrace exactly the path in phase space which it had followed before the re-
versal, since the phase space distribution obeys equation 1. Whether or not
such a reversal of J# is literally possible, it is often convenient to think of
Loschmidt reversals in such terms. This can always be done by making a
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canonical transformation to a new phase space, moving with respect to the
ordinary one, so that the representative point appears to move under the
influence of a Hamiltonian — # when viewed in the moving phase space.
In this restricted sense the Loschmidt reversal can always be said to accom-
plish # — — 5 and, therefore, a time reversal, viz. equation 1. Of course
this is only a way of speaking and not a prescription for constructing a
Loschmidt demon. Note that in a phase space moving according to the
Heisenberg prescription

p* = [exp (i#1)] p exp (—iH1) 2)

the density is invariant and the question of approach to equilibrium (or
any other condition) does not arise. If the notion of Hamiltonian-reversal
or time-reversal is to be useful in discovering Loschmidt demons it must be
by suggesting external forces which make the moving frame of reference
somehow appropriate to the system.

III. LOSCHMIDT DEMONS FOR SPIN ECHOES

The relation of the point of view just expressed to the Hahn spin echo is
easily expressed. For our purposes we will find it convenient first to discuss
a segment of a Carr—Purcell train of type B'* comprising an interval 4z
which begins just after one 180° pulse and ends just after the second suc-
ceeding pulse. In the rotating frame, the state vector develops according to

YRty + 41) = P e 2P e” 2 iy (1) 3)
with
P =exp(—inl,) 4)

Insertion of the identity operator P~ 'P at the point marked by the comma
in equation 3, and using the fact that P? = 1 for 180° pulses, one has

Unlto + 41) = e~ 2F e 2y (1) (5)
where
H =Pw#P 1. (6)

For the usual inhomogeneous distribution of Larmor frequencies about
some reference frequency the secular rotating frame Hamiltonian is

Whereupon equation 6 shows that
H = — A Yglty + 41) = Yrlto) ()

The Loschmidt demon has restored the system to the same dynamical state
it was in at time t,. The passage from equations 3 to 5 embodies the introduc-
tion of an interaction representation from which the explicit rf pulse fields
have been removed. In this (singularly) moving reference frame the Hamil-
tonian appears to have been reversed in sign during the second half of the
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4t interval, corresponding to a reversed time development. Naturally if a
nonequilibrium magnetization (M) existed at any time during the interval,
it will be echoed at the corresponding moment in the next such interval.

The Hamiltonian (7) contains no interactions among the particles, as
mentioned in Section I, and is thus analogous to the famous ideal gas of
noncolliding particles which is incapable of reaching Maxwell-Boltzmann
equilibrium. However, this point is peripheral to the discussion above, which
centred on the symmetries of # under rotations in spin space. (Correspond-
ing symmetries exist under rotations in laboratory space when the §, arise
from an inhomogeneous magnet, and echo phenomena are known for spin-
ning samples'®). Even Hamiltonians describing interacting particles may
possess symmetries which permit the construction of Loschmidt demons.

The ‘magic sandwich’ echoes® are a case in point. Here the relevant
rotating-frame secular Hamiltonian is the truncated dipole-dipole interac-
tion

N
yf.(i) = Z<Zbij(li'1j - 31z}1zj) 9
, t<J

which possesses all the requisite nonlocal features one is accustomed to
associate with irreversibility. The manipulation to be performed, in its
simplest? * but not most effective form, consists in applying a strong rf field
of specified duration ¢y in the x direction of the rotating frame, immediately
preceded and followed by 90° pulses, one in the + y and the other in the —y
direction. Omitting the effects of #3 during the brief 90° pulses (but not
during the much longer interval tg), one has

T T
Urlto + tp) = exp (— i 1,.) exp {— its(PHLI, + #3)} exp (i < 1,,) (10)

Now if H, is much stronger than the dipolar local fields, #°9 can be treated
as a perturbation in equation 10. To first order we keep only that part of #
which is diagonal in a representation which diagonalizes yH 1. It (and its
higher order corrections) are conveniently found by coherent averaging
theory!S, the result being an operator

x 1
Hy = ZZ 3 bij (Ii'lj - 31xi1xj) (11)
1<j
Now the centre factor of equation 10 can be written as the product of two

commuting exponentials, one of which is the identity operator if the duration
of the burst is adjusted so that yH ;ty = 2nz, n an integer :

exp (— 2innl) = (1) % = 1 (12)
Now
nlto + t) = fexp (<15 1) exp (= itg#5) exp (13 1,) it
= exp { — ity (— 3#9)} Yr(to)

= lﬁk‘\to - t_;) (13)
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The state of the system is the same as it was a time tz/2 before the beginning
of the hurst. Any decay of magnetization or any other property that might
have occurred during that period is recovered.

A version of this experiment is shown in Figure 3. Here, instead of the
steady rf field described above, a complex pulse train is based on a pulsed

Figure 3. Dipolar echo in a CaF, crystal. using a pulse sequence for time reversal.’

line-narrowing method'” according to the prescription of Schneider and
Schmiedel®. A free induction decay is allowed to occur for a certain time,
after which the time-reversing pulse sequence is applied. Through the win-
dows in the sequence one can see a ‘rotary echo’ representing the retracing
of the dynamical history of the system through ¢ = 0 to the equivalent of a
negative time. (In this case the reverse development is somewhat slower
than the half-normal rate implied by equation 13). Upon termination of the
sequence the system develops normally through t = 0, recovering and
subsequently losing the original magnetization.

IV. CONCLUSION

The main point of the preceding discussion has been to emphasize the fact
that isolated dynamical systems indeed do obey the (reversible) laws of
mechanics, irrespective of the number of particles they contain or the apparent
complexity of the interactions among them. In effect every such system
possesses a set of perfect ‘normal modes’ to which the notion of damping is
foreign, but we are not always able to see how to excite a single one of these
modes in such a way as to make its coherence experimentally evident. The
fact that we cannot usually do so deliberately implies that it is not likely to
occur by accident. Thus experimental predictions based on a postulated
equilibrium distribution of modes are nearly always in accord with ones
based on the true distribution resulting from some previous history.
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