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. Carbon-13 NMR spectra have been obtained for p-methoxy benzylidene p'-n-butylaniline (MBBA) in

the isotropic, nematic, and. solid phases. Sharp, resolved spectra were obtained in the nematic phase

with high-power proton-spin decoupling. The isotropic-nematic transition is accompanied by a

discontinuous change in "C absorption frequencies due to the molecular ordering and anisotropic

chemical shielding. It is ooncluded that the benzene rings reorient rapidly about the para axes.

Employing average values from studies of "C chemical shielding tensors in model aromatic solids,

absolute values of the order parameter S are estimated and normalized values are compared with

previous results. The nematic-solid transition is accompanied by sudden and severe line broadening due

to anisotropic chemical shielding.

INTRODUCTION RESULTS AND DISCUSSION

Although nuclear magnetic resonance (NMR) has

featured prominently in the study of liquid cry-
stals, ' its application has not been straightforward.
'The reason for this is readily appreciated: The

molecules comprising liquid-crystal systems are
normally long and rodlike in character. ' In the

isotropic liquid phase rapid molecular reorienta-
tion takes place and thus averages to zero the di-
rect magnetic dipolar couplings between nuclear
spins. In the liquid-crystalline phase, motion

about the long axes is rapid, but the axes (the mo-
lecular directors) are aligned preferentially along
the magnetic field and reorientation is inhibited.

This leads to complicated, normally intractably
broadened NMR spectra. 'Thus, most studies have

resorted to the use of small probe molecules, '
wide-line spin relaxation times and second mo-

ments, ' partial deuteration, ' etc. , and no general
useful approach has been available.

In this paper we report the observation of "C
NMR spectra in the isotropic, nematic, and solid
phases of p-methoxy benzylidene P'-n -butylaniline
(MBBA), Fig. 1. This work provides the first
high-resolution "C NMR study of the phase transi-
tions in a liquid crystal and opens the way for a
detailed study of structure and dynamics in liquid
crystals on a microscopic scale. ' 'The advantages
of observing "C derive from the absence of ' C-"C
dipolar splittings owing to its low natural isotopic
abundance (-1%), the large range of chemical shifts
and thus sensitivity to molecular ordering, and
the dominant dependence of the "C spectra and

spin relaxation times upon local intramolecular
effects.

Figure 2 shows Fourier transform "C NMR

spectra of neat MBBA under different conditions.
At high temperature (46 'C), the system exhibits
normal isotropic liquid behavior and spectra are
shown for experiments with and without proton
spin decoupling. The line splittings from spec-
trum (a) to (b) are due to electron-coupled inter-
actions between "C and 'H nuclear spins and have
aided us in the assignment of lines to specific car-
bon nuclei. Since, in this phase, the molecules
are reorienting rapidly, the chemical shifts p,.

correspond to an isotropic average over the chemi-
cal shielding tensors 0,

0,. = 3 tro.
In the nematic phase, the molecules are aligned
preferentially with the long axis (the molecular
director D in Fig. 1) along 8, and thus shifts in

the line positions are expected. For aromatic
"C nuclei the heaviest shielding occurs perpendic-
ular to the aromatic plane, whereas for the at-
tached aliphatic group the lightest shielding occurs
in this direction. ' Thus we expect a downfield
shift of the aromatic lines and an upfield shift of
the aliPhatic lines in the isotropic-nematic transi-
tion, exactly as observed in spectru~ (d). Without

proton decoupling, at this temperature, a broad
structureless resonance is obtained. Spectrum (c)
taken at the isotropic-nematic transition point
(40.6')8 shows sharp lines from both the high- and

low-temperature regimes indicating that the tran-
sition is discontinuous and first order within our
temperature resolution (0.4'). As the temperature
is lowered in the nematic phase the proton-de-
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FIG. 4. Order parameter for MBBA calculated from
3C chemical shifts'in Fig. 3 and normalized (N) to 0.39
(Lee, Hsu, and Dolphin, cited in Ref. 12) at 2'z-&=2'.
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FIG. 3. Dependence of 3C line positions in MBBA on
temperature. The points below 18'C vie taken with
temperature decreasing from the nematic phase, since
the lines are broad in the solid.

ho= 3 S(o II
—oi),

where S is the order parameter. Vfe have used
average data for 0 from studies of model aromatic
solids, ' taking pig 98 @22 13 Q33 108 ppm
to ca,lculate values of S from the data in Fig. 3
and Eels. (1)-(4) with g=9'. We estimate, for
example, S= 0.58 at 10 C in the nematic phase
and S= 0.29 just below the clearing point (40.6 'C),
with a consistency of +0.03 between the different
sets of "C nuclei. To compare our results with
previous work, Fig. 4 shows relative values of S
calculated from the "C shifts and normalized (N)
to the value at T, —7=2'." A full determination
of the tensors g from solid-state work will yield
precise values of S and molecular conformation
parameters and such work is under way in our
laboratory.

(iv) Jn the nematic phase, cross pofarization
bet&veen the 'H and ~ C spins" is efficient and most
of the spectra were obtained using this technique.

Unlike the case of solids, this probably proceeds
by an intramolecular transfer since translational
diffusion is rapid. " The advantages of this ap-
proach over normal Fourier-transform NMR are
enhanced signal-to-noise ratio and the possibility
of studying order fluctuations through "C-'H
cross -polarization dynamics.

This work shows that high-resolution NMR in
liquid crysta, ls is indeed possible and that a great
deal of information is available from our approach.
Further details of those experiments and results
on other nematic and smectic systems will be re-
ported elsewhere.

The experiments were performed on a "home-
built" double-resonance spectrometer operating
at 26.7 MHz for "C. Proton decoupling fields
were provided by a tuned amplifier delivering
several hundred watts of rf power into a double-
coil probe in the bore of a superconducting mag-
net. The probe was tuned with high-voltage capaci-
tors of polished copper tubes with Teflon dielec-
tric. Temperature was controlled with a stream
of dry nitrogen gas passing through a dry-ice-
acetone heat exchanger and then through a heated
copper column. Further experimental details will
be published separately.
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