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We derive sequences of new composite pulses that can provide constant rotations of 
arbitrary Ilip angle in the presence of large resonance o&et effects. These symmetric se- 
quences use only 180“ phase shifts, and have the same symmetry properties as a single 
radiofirquency pulse. For two-level systems, these composite pulses behave like ideal single 
rf pulses, making them of potential use in a wide variety of experimental situations. 
Q 1987 Academic F’rcs, Inc. 

INTRODUCTION 

Composite pulses (I, 2) have found use in many NMR experiments for which a 
single radiofrequency pulse, due to its restricted bandwidth, is inadequate. Examples 
of improvements in excitation or inversion bandwidths in isotropic liquids (3-5) and 
solids (6-9) are well-established. Typical composite pulses are constructed from con- 
stant-amplitude rectangular pulses using a piecewise constant phase function; in ad- 
dition the frequency of the rf irradiation is almost always fixed. These restrictions 
have arisen both from the hardware limitations imposed by most high-resolution speo 
trometers and from the difficulty of analyzing more elaborate irradiation strategies. 
There are, nevertheless, examples of continuous modulation schemes in the recent 
literature (10-13). 

Of the more conventional composite pulses, an important subset is the set of all 
phase-alternating composite pulses, where the phase function $k for the kth pulse is 
restricted to the values of 0 or ?r. These sequences have proven effective for resonance 
offset compensation in broadband spin decoupling (14-I@, broadband spin inversion 
(5), and spatial localization (19) experiments in liquids, and for broadband three-level 
excitation in solids (7, 8). Here we restrict ourselves to the family of phase-alternating 
composite pulses that are symmetric in time, and demonstrate analytically that even 
this small subset of all possible composite pulses can support sequences providing 
both controlled uniform rotations applicable to any initial state of the spins and specific 
uniform “point-to-point” transformations of one spin operator, for example, I,, into 
another, for example, I,,. These latter composite pulses can be used to create transverse 
magnetization of constant phase over quite large bandwidths, eliminating the usual 
phase shift of the excitation as a function of resonance offset. 

THEORY 

We consider an ensemble of isolated spin-3 nuclei, and concentrate on the single 
imperfection that the irradiation frequency w is mismatched to the resonance frequency 
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wo, producing a resonance offset Aw = w - wo. In the usual rotating frame, the Ham- 
iltonian during the kth pulse, of duration Tk, can be written 

Hk=Hkrf+ I/ PI 
where 

Hkrf=(-l)ku,Ix PI 
V= Ad,. 131 

The symmetric phase-alternating composite pulse leads to an overall propagator at 
time 7 = &Tk given by 

U(7) = n eXp(-i7&) = exp(icun * I) 141 
k 

corresponding to a pure rotation of angle (Y about a unit axis n. In general, both (Y 
and n will depend on AU. Our first goal is to show that, by the correct choice of the 
pulsewidths 7k, this dependence can be eliminated over a range of AU about exact 
resonance for any desired flip angle (Y. 

Our analysis begins with coherent averaging theory (20), in which the operator V, 
after transforming into an interaction representation, is treated as a perturbation. By 
examining the perturbation series in powers of AU/W,, we can estimate how strong 
the dependence on V will be. To this end, we decompose the propagator U(T) in the 
manner suggested by Tycko et al. (9) and write 

U( 7) = &f(T) Uv(7) 

where l&(7) represents the ideal transformation and Uy(7) the imperfection: 

PI 

UdT) = Texp( -is @t)dt] 

V(t) = u,(t)-’ VU&) [71 

and T denotes time ordering. We then use the Magnus expansion (21) to write Uv(7) 
as the complex exponential of an averaged operator v, which is expressed as an infinite 
series: 

7=p7@)+p)+v(*)+. . .* PI 
The terms in the series are well-known. For v”’ and v”) we have 

FJ’(‘)=~ Tdtf(t) 
s 7 0 

P)=;ldtl J”dt&t,), v(tz)] 
0 

and higher-order terms are available (22, 23). By nulling successive terms v’“) we 
insure that &(T) approaches the identity operator, so the propagator U(T) approaches 
the ideal propagator Turf. Since it is T P that enters into the calculation of t&(7), 
and hence the departure of U(7) from U&T), we shall always consider the quanti- 
ties 7 P’. 
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In the case of a single rf pulse, we find that v”) = 0 only if the flip angle (Y on 
resonance is a multiple of 27r. Geometrically, we can understand this result by realizing 
that the spins will least be able to detect a finite AU/W, when they undergo a complete 
revolution about the effective field. In such a case, the net rotation axis n is of no 
importance, and only the dependence of (Y on Aw need be considered. v”’ is always 
nonvanishing for a single rf pulse: 

illI 

and TV’) is a rapidly increasing function of CY. A 27r pulse is more nearly cyclic with 
respect to PO than a multiple of 27r. Roughly speaking, the term v”’ measures the 
deviation of the rotation axis n, while v”) monitors the increased rotation angle, as a 
function of AU. 

The next class we consider is all composite pulses of the form &cw& , where the 
overbars denote a phase shift of ?r and the hip angles (Y~ are understood to be the 
nominal rotation angles (when Aw = 0). The zeroth-order term in the Magnus ex- 
pansion is 

7v’“‘=~{crr,+~zy+~zz} 1121 

where 

a=0 P31 

6= l-2coscl!~+2cos(cY~-a*)-cos(2cu,-(Y*) iI41 

C= 2 sinal - 2 sin(cYi - CQ) + sin(2cui -(Y*). [I51 
In the notation of Ref. (9), a zeroth-order composite pulse is obtained if positive angles 
(Y] and (Y~ can be found so that both 6 and Fare zero. In fact, Eqs. [ 141 and [ 151 are 
the real and imaginary parts of a single complex equation, and the relationship 

6 = C tan[(2a, - a&2] 1161 
holds. There is a continuum of solutions as a function of the net flip angle on resonance, 
CY = a2 - 2al. Given a, the solution is 

aI = arg[ 1 - e+ & [ 1 + 14e@ + e-‘$“‘] iI71 

az=2a,+ar [W 
where we recall arg{ re”} = 0 for real positive r. Equations [ 171 and [ 181 constitute an 
explicit prescription to construct composite pulses of any net tlip angle CY so that a 
constant rotation is obtained as a function of Aw, to zeroth-order in the Magnus 
expansion. In degrees we have, for example, 

a= 180: u=@i3ooB 1191 

a= 135: u=85 305 85 PO1 
cY=90: U= 114.3 318.6 114.3 Pll 

- - 
a=45: U= 146.5 338 146.5. P21 
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To zeroth-order in the Magnus expansion, these composite pulses yield constant ro- 
tations of the form U = exp(icwZ,). This is the first example we know of in which a 
continuum of exact solutions, as a Cmction of the nominal Ilip angle of the composite 
pulse, has been found. 

The calculation for v”) can be carried through similarly, and we find 

where 61 = C; = 0 and 

ii, = 2a, - a2 - sin(2ai - (Ye) + 4{sin(cu, - a2) - [sin (Y] -sin (~~1). [241 

Since (Y~ and a2 are already fixed by the requirement that k’(O) = 0, the value of v”’ 
is fixed. For the sequences of Eqs. [ 19]-[22] we find 

a= 180: TV(‘) = -3.303ZXAw2fw: ~251 

a! = 135: 7 v”’ = -3.1 69ZXAw2/w: WI 
a=90: TV+)= -2.608ZxAw2/w: 1271 

a=45: 7 v”’ = - 1 .493ZXAw2/w: WI 
- - 

while the (a = 0) sequence 180 360 180 has fl ‘) = v”’ = 0. We note that since v”’ 
commutes with U,.r the first sign of poor performance should be a deviation in (Y from 
the prescribed value, rather than any deviation in n. Since the value of TV(‘) is quite 
large for these sequences, we expect only a modest operating bandwidth. It is a general 
property of all phase alternating sequences, whether symmetric or not, that the even- 
order terms in the Magnus expansion will be a linear combination of I,, and Z, whereas 
the odd-order terms will be proportional to Z,. 

For 5-pulse sequences of the form G~cx~(U~(Y~& the corresponding equations for v”’ 
and v”) reduce to 

6 = 1 - 2 coscyi + 2 cos(CY, - (Yz) - 2 cos(cu, - ff2 + (Yj) 

+2 cos(c~,-2a~+a~)-cos(2a,-22cy~+a~) [29] 

C= 2 sina, - 2 sin(cu, - a2) + 2 sin(cui - a2 + ars) 

- 2 sin(a, - 2a2 + (Ye) + sin(2ai - 2a2 + CX,) [30] 

and 

a;=2a,-2ff2+aJ- sin(2crl-2a2+~~)+4{sin(~i-~2)-sincYl+2sina2-sincu3 

- 2 sin(o2 - (Ye) - sin(cri - a2 + as) + sin(2cut - (Ye) + sin(cui - 2a2 + a3)). [3 l] 

Due to the presence of both &k and sin ffk, we have found no general solution to 
Eqs. [29]-[31]. However, it is once again true that 6 and Fare related, and only the 
former need be considered when looking for numerical solutions. Furthermore, it is 
unclear whether any solutions exist. For an overall rotation (Y = ?r a solution exists 

-- 
a = 180: U=34328054280343 1321 
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but for other flip angles the requirements 6 = 0 and a, = 0 appear incompatible. 
Nevertheless, sequences with 6 - 0 and small a, can be found. 

Rather than follow through a case by case analysis of 7-, 9-, and longer (2m + I)- 
pulse sequences, we summarize the relevant equations for sequences of arbitrary length. 
For an arbitrary sequence of the form (Y~(Y* * * * CY~,&~+~) where we understand 
(Yk = (YQm+2-k) and defining A,, by 

An = i (- l)k+‘ak [331 
k=O 

withcu,=Owefind 
2m 

6 = 1 - ~42m+l) +2 z(-lr’cosAj 1341 
j-1 

Zm 

Z=si1&~,+1,-2 c(-1y’sinAj 
j=l 

2m+ I 2m+l k-l 

Cl = z (-l)‘+‘Y.+ 2 2 (-l)""v,j I 

[351 

[361 

where Vj and V, are definedzy 

k=2 j=l 

Vj=‘Yj-SiIlCIj [371 
vkj= Sin(Ak-1 - Aj-1) - Sin(Ak-i - Aj-1 i- (-l)k’“Ctk) 

-Sin(Ak-,-Aj-~-(-l)j”~j)+Sin(Ak-~-Aj-~+(-l)k”’~k-(-lly’+1~j). [38] 

The symmetry properties 
5 = VZm+2- j [391 

Vkj = V(2m+2- jX2m+2-k) [401 
greatly reduce the computational work involved in evaluating Eq. [36]. 

Any phase-alternating composite pulse a! i a2& . . - satisfying Eqs. [ 34]-[ 361 produces 
a constant rotation as a funtion of Au to first order in the Magnus expansion; Eqs. 
[39] and [40] are only necessarily true for symmetric sequences, however. 

SYMMETRY PROPERTIES 

It is perfectly reasonable to derive closed expressions for f12) and even P’(3) for the 
specific composite pulses under consideration. While the solution of the resulting 
equations would guarantee very uniform performance around Aw = 0, it does not 
necessarily guarantee a large bandwidth. As the offset increases, Au/w, approaches 
unity, and ever more terms in the Magnus expansion become important. When Aw/ 
wI exceeds unity, the whole perturbation approach breaks down. In addition, the 
numerical calculation of the terms v’“) quickly becomes more costly than the exact 
calculation of U(T) itself. This is to be recognized as a fundamental limitation of the 
perturbation approach. To achieve large bandwidths, it is U(T) we must consider. 

The symmetry of the composite pulse can best be examined by considering the 
symmetry of the underlying piecewise-constant phase function #(it) defined by 
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J&f(t) = wlexp(-i~(t)Z,)Z,exp(i~(t)l,). [411 

The symmetry of $ imparts important symmetry properties to U so that, in two im- 
portant ways, symmetric phase alternating composite pulses behave exactly like a 
single rf pulse. Firstly, since the phase shift scheme is symmetric in time, q(t) 
= J/(T - t), the performance is independent of the sign of Aw (24). Second, since 
0 = -0 and ?r = -?r for rf phase shifts, the scheme is also antisymmetric in time, 
y?(t) = -#(T - t). This property constrains U, at all resonance offsets, to be a rotation 
about some axis in the xz plane (25). A single rf pulse automatically possesses these 
properties since $(t) is identically zero. 

The propagator U can be written in the form U = P’P, where P denotes the trans- 
formation resulting from the first half of the composite pulse, and P’ that from the 
last half, in which the rfpulses are simply reversed in time. If U(T, +) is the propagator 
at some positive offset A?lw and U(7, -) that for the corresponding negative offset, then 
the symmetry property means that 

U(T, +) = exp(i?rZ,)U(T, -)-‘exp(-i?rZ,) 1421 

P’(+) = exp(irZ,)P(-)-‘exp(-irZz) [431 

whereas the antisymmetry property yields 

U(T, +) = exp(i?rZ,)U(7, +)-‘exp(-i7rZJ 1441 

P’(+) = exp(zkZY)P(+)-‘exp(-i?rl,). ]451 

Aside from the obvious saving in computation by halving both the offset range and 
the number of pulses, these properties show that, under some circumstances, P itself 
may be of special interest. 

Suppose that, over a given offset range, U approximates a perfect inversion pulse, 
U = exp(z%ZJ. Then multiplying both sides of Eq. [45] on the right by P we have 

exp(i?rZ,) = exp(i?rl,)P-‘exp(-i?rZ,)P 1461 

which can be rearranged to give 

P exp(-i7rZJP’ = exp(-i?rZ,). [471 
It follows that 

PI,P-’ = ZY [481 

that is, P converts longitudinal magnetization into transverse magnetization with no 
phase gradient as a function of resonance ofiet. Since P is not necessarily a constant 
rotation over the same range, yet P maps a particular point of the state space onto 
another particular point, we call P a point-to-point transformation. Such composite 
pulses are ideal substitutes for the initial 90” pulse in a wide range of experiments, 
and should simplify the required phase correction in, for example, phase-sensitive 
two-dimensional NIvIR experiments. 

COMPUTATIONAL 

Composite pulses offering bandwidths up to about Au/o1 = kO.5 result from ap 
proximate solutions of Eqs. [34]-[36]. There are many such composite pulses, varying 
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in both duration and complexity. Shorter and less complicated sequences result in 
smaller bandwidths, but may prove useful in situations where the overall duration of 
the composite pulse is a consideration. To explore bandwidths up to AU/W, = + 1 .O, 
or beyond, it is necessary to optimize U directly. This can be accomplished by accepting 
an approximate solution in the perturbation series as an initial iterate for a numerical 
nonlinear optimization. The optimization is then performed by minimizing the norm 
11 Qr - U 11, measuring the deviation of U from the ideal propagator U+ Details of the 
optimization procedure have been described elsewhere (5). 

We have found that, for any given sequence consisting of up to 15 pulses, there 
seems to be a “natural” bandwidth over which the composite pulse performs extremely 
well, but that any attempt to increase this bandwidth results in unacceptable deteri- 
oration in the performance over the intermediate offset range. In Table 1 we summarize 
representative results for flip angles of 180, 135, and 90”. The stated bandwidths for 
each composite pulse reflect the offset range over which the composite pulse delivers 
the specified rotation exp(i&,) with acceptable accuracy. In this case, the z component, 
n,, of the rotation axis is kept below a few percent, and the thp angle (Y never deviates 
by more than a few degrees over the indicated bandwidths. In more concrete terms, 
these composite pulses perform, within the stated limits, about as well as the equivalent 
single pulse performs over the range AU/W, = kO.08. The corresponding point-to- 
point 90” pulses can be obtained from the first half of the composite 180” pulses listed 
in the table, for example, 59 149, 58 140 172, etc. 

We emphasize that these predictions suppose that no other pulse imperfections are 
present: in particular, the flip angles of the constituent pulses in each composite pulse 

TABLE 1 

Composite Pulses For Broadband Constant Rotations 

Angle Bandwidth” Length * Sequence 

- 
90 kO.20 542 113 316113 - 
90 +0.35 698 24 152 346 152 24 - 
90 +0.60 1218 ~30026654266300~ 
90 eO.80 1410 119183211 384211 183 119 - - 
90 xkl.0 2538 160 324 141 204 320 8;172 %i 320 204 141 324 160 

135 kO.15 471 a 303 w - - 
135 +0.35 713 39 144 347 144 39 -- 
135 kO.60 1251 fl320 266 53 266 320 n - - 
135 kO.80 1411 10 105 182 214 389 214 182 i% 10 - 
135 fl.1 2399 158 308 137178304m69m304178 137308 158 

180 kO.15 416 3 298 35i - - 
180 +0.35 740 58 140 344 140 58 -- 
180 kO.65 1232 325 263 56 263 325 - 
180 kO.75 1352 i% 180227406227 180% - 
180 k0.85 1420 27wl8Om386211 180%27 - - - 
180 fl.2 2320 158294144152291@64%291~144294158 

a In terms of the dimensionless offset parameter Aw/wi . 
* Total rotation in degrees. 



502 SHAKA AND PINES 

should be accurately set, and no compensation for rf inhomogeneity is offered. Near 
to exact resonance, these phase-alternating sequences all show the same sensitivity to 
rf inhomogeneity as a single pulse; at other resonance offsets they can be either more 
or less sensitive. 

CONCLUSION 

We have demonstrated that symmetric phase-alternating composite pulses can pro- 
vide constant rotations of arbitrary flip angles over large bandwidths. For two-level 
systems, these composite pulses behave like ideal single rfpulses, and can be substituted 
for conventional pulses in complicated multiple-pulse sequences or two-dimensional 
NMR experiments whenever resonance offset effects represent the principal problem. 
When networks of coupled spins are involved, the composite pulses must be of short 
duration compared with the inverse of a representative coupling constant if the com- 
pensation is to be effective. 

Our sequences are based on a perturbation treatment which is known to result in 
composite pulses providing constant rotations (4, 6, 9). Our improvement has been 
to extend the operational bandwidth far beyond the regime over which the lirst few 
terms of the perturbation series provide an adequate approximation to the exact so- 
lution. The success of this approach has relied on the symmetry properties of the 
composite pulse and the great simplifications that result by using only 180” phase 
shifts. 

Of the class of constant amplitude composite pulses, only the symmetric phase- 
alternating sequences retain the symmetry and antisymmetry properties of a single rf 
pulse. In the more general case where the pulse amplitude is allowed to vary, the 
corresponding sequences must have a symmetric amplitude function. A number of 
such sequences, based on a Gaussian amplitude function, have appeared in the high- 
resolution literature (26-28). 
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