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The theoretical approach utilizing bimodal Floquet theory in the quadrupolar/central-transition
interaction frame, presented in an earlier articleD. Walls, K. H. Lim, and A. Pines, J. Chem.
Phys.116, 79 (2002], is extended to describe the more complicated spin dynamits 6f2 spin
systems. Rotary resonance effects occur when the strength of the radio-frequency irradigtion,
matches the sample spinning speeg),, at the conditionsw;=3nw, (n integra). At these
conditions, conversions of both triple-quantum and five-quantum coherences to central-quantum
coherence are observed. Between rotary resonance condt@as<w;<[2(n+1)]/3w,],
five-quantum as well as triple-quantum coherences can be created from equilibmagnetization

via a nutation mechanism. In addition, effective transfer between five-quantum and triple-quantum
coherences also is observed in between rotary resonance conditions. These effects have been
investigated theoretically and verified by both numerical calculations and experimental
results. ©2002 American Institute of Physic§DOI: 10.1063/1.1483256

I. INTRODUCTION Therefore, in order to design rf pulses to manipulate quadru-
_ _ . polar nuclei for MQMAS spectroscopy, an understanding of
Approximately 60 percent of all NMR-active nuclei are the spin dynamics under both RF irradiation and MAS is
quadrupolar (>1/2), and due to the high sensitivity of the required.
nuclear quadrupole moment to local electric field gradients, Vega demonstrated that the spin-locking behavior of
NMR studies of quadrupolar nuclei have been of great imguadrupolar nuclei under MAS conditions is drastically dif-
portance in the study of glasses, minerals, zeolites, and oth@rent from that off = 1/2 nuclei®** The theory of the spin
inorganic materials in the solid stafe? In high magnetic  gynamics forl = 1/2 nuclei is relatively well established due
fields, the first-order quadrupolar interaction h_as no effect 0Ry the fact that the rf field strength is usually much larger
the frequency of the spectrum’s central transiti@T), and  than the time-dependent spin interactigssch as dipole—
its effect may be removed from the satellite transitions Viaginole coupling and chemical shift anisotropyand trans-
rotor-synchronized magic-angle spinni@gAS). However,  orming the Hamiltonian into the rf interaction frame yields
due to the fact th.at the quadrupole coupling is in most CaSE€Faluable insight. However, the situation becomes quite dif-
a large perturbathn tq the Zeemgn energy, the second-ord%rent for quadrupolar spin systems>(1/2), since thd¢ime-
quadrupolar coup'hn'g. IS non—negl|g|ple and broadgn_s the IIn(?iependen'quadrupolar interaction typically is much larger
shapes, thereby limiting the resolution and sensitivity of the[han thetime-independentf field strength under most prac-

NMR experiment. The early dynamic angle Spinr]mgtical experimental conditions, resulting in unique quadrupo-
(DAS)*>%and double-rotatiolDOR)* experiments were de- . . "
lar spin dynamics. The behavior of quadrupolar systems has

velopgd n orQer to average away t.he second-order qua_dr%—een found to depend strongly on the relative magnitudes of
polar interaction by purely mechanical means, by spmnmqhe rf irradiation, w,, the sample spinning frequency
il H { /]

the sample about more than one axis. Frydreaal!? sub- 4 th druolar { An adiabaticit
sequently proposed the MQMAS technique, which refocuse@n® "€ qga rupotar rgquenon. n adia .a Iclty param-
ter,a= wi/w,wqg, was introduced by Vega in order to char-

the anisotropic second-order quadrupolar interaction b)? e th inlocking d 13n the adiabati )
evolving under various multiple-quantum coherences whilghcterize the spin-locking ypaml In the & |a. at'lc regime .
magic-angle sample spinning. The necessity of evolving un(“>1)' where the rf power is high and the spinning speed is

der various multiple-quantum coherences requires the desidﬁéw’ CT coherences are transferred. to mult{ple-quantum co”
of pulse sequences that are capable of producing the desir@§T€Nces adq undergoes zerocrossings during the course of
excitation and transfers of these coherences in the present® MAS. The quadrupolar spin dynamics in the sudden-

of a large, time-dependent first-order quadrupolar interactiorP@ssage regimea(<1), where the rf power is low and the
spinning speed is high, is markedly different from the dy-

_ o namics in the adiabatic regime. In Vega’s treatment, no trans-
dpresent address: Chemistry Department, New York University, New York . .
NY 10003. fers between CT and MQ coherences are predicted in the
PElectronic mail: pines@cchem.berkeley.edu sudden-passage limit, and thus the CT coherence is
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efficiently spin-locked for all times during the irradiation. where w, is the strength of the rf field and, is the rotor
This semiquantitive physical picture has explained SUCCESSfequencyHg')(t) describes the first-order quadrupolar inter-
fully some of the main features of the spin dynamics thataction, ancH ¢ describes the radio-frequency irradiation. The
have been observed in experiments, such as the coherenggites are labeled bjl)=|m,=+5/2), |2)=|+3/2), |3)
transfers in the adiabatic regifieand efficient spin-locking —|+1/2), |4)=|-1/2), |5)=|-3/2), and |6)=|—5/2).

at certain rf values in the sudden-passage limit. However, “i’he effects of the second-order quadrupolar interaction,
has been observed that when the rf power is appropriatel
matched to the spinning speed at the conditicag
=4nw,/(21+1) (wheren is a positive integer the CT co-
herence does not remain spin-lock&d’ Additionally, simi-

lar resonant effects were observed in homonuclear dipolar

recoupling experiments involving quadrupolar nuclei under

MAS conditions'® Also, Vosegaaret al'® reported unusual

spin dynamics forl =3/2 nuclei in the sudden-passage re- wo(t) = w[C; cog w,t+y)+C, o 2wt +27)

gime. At the conditionsw;=nw,, an efficient conversion

between CT and triple-quantum coherences occurs in the + Sy sin(w,t+y) + S, sin(2wt+2y) ], (2
sudden-passage limit, whereas the excitation efficiency of

triple-quantum coherence frommagnetization is enhanced

when in between the resonant conditions af2f o, <w, whereC,, C,, S, andS, depend on the anglé between

<(n+1/2) w, . We have recently developed a new theoren-the rotor axis and the Zeeman field axis, and on the

cal approach in order to explain the interesting spin dynam- L :
ics in 1=3/2 systems using bimodal Floguet theory in acrystalhte dependent Euler angles3,y] that relate the qua

novel interaction frame that combines the CT rf and first—drUpOIar principal axis systetiPAS) to the rotor-fixed coor-

order quadrupolar interactioR®.We demonstrated that the d!nate.system. I;xpressmns 0, C1, C2, S, ands, are
basis for the “rotary resonance(RR) effects atw,=nw,  91Ven in Appendix A. o
was the result of a degenerate mixing of the triple-quantum  The propagator for the Hamiltonian is
coherence statd3 + )= (1#2) (|3/2) = | — 3/2)) with the CT

coherence statd€ + )= (1n7?2) (|1/2)=|—1/2)) at the con-

ditions w;=nw,, whereas triple-quantum excitation was

found to result from higher-order terms in the Hamilton- t

i U(t)=T{ex;{—|foH(t’)dt’”,

¢hemical shift anisotropyCSA), and resonance offset terms
will be discussed later in the article. The time-dependent
first-order quadrupolar coupling is given by

ian. ()

In this paper, we extend our previous study of the spin
dynamics of quadrupolar nuclei in the sudden-passage re-
gime to | =5/2 nuclei. We attempt to gain insight into the
complicated spin dynamics by again developing a bimodalvhereT is the Dyson time-ordering operator. The evaluation
Floquet treatment using an interaction frame that combinegf this propagator is difficult due to the fact that in general
both the CT rf Hamiltonian with the first-order quadrupolar [H(t),H(t")]#0 for timest#t’. We previously introduced
Hamiltonian, only this time evaluating the Floquet Hamil- 5 transformation into an interaction frame defined by the
tonian using an effective Hamiltonian treatméhthis the-  fct-order quadrupolar Hamiltonian and the CT operator

o.retical_ forma]ism s th.en. compared_ to exact numericalfrom the rf Hamiltonian that was found to be useful in de-
simulations. Finally, preliminary experimental data are pre- cribing the spin dynamics in a bimodal Floquet theory
sented on five-quantum to triple-quantum conversion am? 20 . .

: . Lo reatment:” Although such a treatment will be used in the
triple-quantum to single-quantum conversion in the5/2

following discussion, it was shown recerfflyfor the |

27Al system. _ ,
=3/2 system that unimodal Floquet theory also can give the
same resultsthe equivalence between the two approaches is
demonstrated in Appendix)BThe quadrupolar/CT transfor-

Il. THEORY

mation for a spin =5/2 is

The Hamiltonian for a spih=5/2 quadrupolar nucleus
in the rotating frame under MAS and rf irradiation can be
written in a fictitious spin-1/2 operator ba%ig® as

W(t)zT[exp[ —i ftdt’(HS)(t’)+3wll§(4)
0

]. (4)
H()=HE (1) +Hy

= wo()[2015 2+1615 3—1617 °—2015 ] , _ o
This transformation can be evaluated easily since the CT

+3w13 4+ B [112+157] Hamiltonian commutes with the first-order quadrupolar

o3 as Hamiltonian. The Hamiltonian in this interaction frame is
+2V2wq[15 3 +15°], (1) given by
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dW(t)

Hinr(H) =W () H(O)W(t) —iw(t) +(157°=117%)

:\/Ewl (|>1<‘2+|)5(—6)c05( 12fth(t')dt/
0

12fotwq(t’)dt’ [(I§_3+I§_5)Cos<3z t)+(|2 A 5)sm(32 t)]cos(Gf;wQ(t’)dt’”

((Iis—lia)cos(g +(1% °+1 )sm(suz) t) sm( f;wQ(t’)dt'”

= > E M expl = |Nwt)ex;{—|37Mw1t) (5)

><Sin +21/§w1

+ 2\/20)1

co{l wg(t’ )dt') NZ_ Pnexp(—iNwo,t),
sm<12 th)dt) 2 Qnexp—iNwt),
co{ wQ(t )dt’) Nz_ Ry exp—iNw,t),

sm( wQ(t )dt’ N_Z Syexp —iNw,t), (6)

Hy, +1=vV204[ (Ry+iSy)|TF)(CF[+(Ry—iS\)|CE)(T=]],

5
HN,o=\/7—w1[(PN+iQN)(|Q+><T+|+|q—><T—|)+(PN—iQN)(|T+><q+|+|T—><q—|)]. @)

and |T+)= (172) (|2)+]|5)), |C=)=(1M2)(|3)+|4)),  where the operatorl’, N*, aV, (a")N, bN, and "N are
and |g=)= (1~2)(|1)=|6)) are the triple-quantum coher- defined by

ence, central-quantum coherence, and five-quantum coher- e

ence subspaces, respectively. The coefficienis Py, Ry, (PN, M[N'[p’,N",M")=N3p, o Onnr S m

and Sy are dependent on crystallite orientation. (PN, MNY " N', M"Y =M 8, o Sx n Ot v
It can be seen from Eq(5) that the Hamiltonian is Y Y PR NLNTEM M
modulated at the “natural” frequencies, due to the sample (p.N,M[a"[p",N",M")= 8, s SN —nOmm7

rotation and3w, due to the CT rf irradiation. The time de-

pendence o can be removed by a transformation into ~ (P.N,M[(@")"[p’,N",M")= 68, o S\ nr 4O m »
Floquet spacé>?® The price to be paid is that instead of e

working in a finite-dimensional Hilbert space, calculations (P.NMIB|P",N",M") = 5p pr O N7 S, w7 -

must be.pgrformeq in an infinite-dimensional Floguet space. (p,N,M|(bN"|p’ N, M")= 8o O it 41 9)
Since this interaction frame has two natural frequencies, bi- ’ ' ’
modal Floquet theory must be appli€din Floquet space, The propagator can be written in Hilbert space in terms

the spin statefC+), |T+), |q+) become dressed by states of the Floquet Hamiltonian &%

IN,M) that are labeled by the number of quadrupolar-

induced rotational “quanta” and CT rf “quanta,” respec- U(t)=W(t) >, (N,M|exp(—iHgt)|0,0)
tively, yielding the Floquet stateC+,N,M), |T=,N,M), N,M

and|q*,N,M). A Floguet Hamiltonian then can be written

as xexdi(Now,+ $Mw)t]. (10
3w, The problem arises as to how to evaluate expirt). Since
He=oN"+ TN1+(H0,0+ Hob"+Ho_1b) H is infinite-dimensional, exact diagonalization is possible
in very few cases; therefore, approximations must be made.
” \ N Previous techniques have used static perturbation theory to
+NZO [Hyi(@HVb'+H_y ;aNbT approximate the infinite Floquet Hamiltoniah®® However,

consider dividing Floquet space into an infinite number of
+Hy _1(@HVb+H_ _,aVb], (8)  three dimensional subspacgsy.”, labeled by N and M,



J. Chem. Phys., Vol. 117, No. 2, 8 July 2002

1=5/2 quadrupolar spin dynamics

521

(4) ®) T
NM N,M : - ’
Ds - Ds+ MM |y

H. -
[q=Nm> [a+NMD> .= F ANAM
[T-NmD> [TeNMD> F V_I_ HN"MV

Jc=N +nM=1D> [N+ 1) aNamf F T

. FIG. 1. Partitioning of the Floquet Hamiltonian into
~ three-dimensional subspacé8) Four such subspaces,
S DYM andDY.M! are depicted in the figuréB) Effec-
Sk S=
o — tive Hamiltonians are calculated within each subspace,
: V : i treating the coupling to the other subspaces as a pertur-
NM NM * : : / bation.
DS - I)s+ NM
Py
|q',N',M'> | q+.N"My> . HF 0 --
[T-Nm> FISEYON HF =

SNM

[c-N+ a1 |c+N = npr+ 1D 0 Hp™ [

where D§M={|q=,N,M), |T+,N,M), |C+, N¥n, M for which the effective Hamiltonian treatment is valid de-
+1)}, as shown in Fig. (A). Here,n is a positive integer creases, due to the fact that the subspﬁxg%' are no longer
that minimizes weakly coupled.

|Aw(0)| As shown in Fig. 1B), an effective Hamiltonian is con-

VIAw@]2+[(T+,N,M|HE|C=,NFn,M=1)|2

(A) 1

Inw: =3 ]

= , (11)
VINw, — 2012+ 202 Ry +iSa 2

where Aw®=nw,— 3w, is the zeroth-order energy differ-
ence betweefiT+,N,M) and|C+, N¥n, M*1). Equa-
tion (11) groups together those states that most strongly
couple to each other. If the magnitude of the couplings be-
tween the various subspaces is less than the energy differ
ences between these subspaces, i.e.,

M HEEMY = G M)

Fraction

of 05
Crystallites

=[(N=N")o,+ 2(M=M") oy |>Z|(INMHL VMY, B) !
(12)

for [iNMyeDNM [N My e DNOMIN, M#N, M’ and Z
>1, then an “effective Hamiltonian” can be constructed
within each subspace. Effective Hamiltonian theory is a per- 05
turbative technique that separates the system into differenicrystatiites
manifoldsDY:M that are weakly coupled to each other, as
defined for this case in Eq12). The couplings between the
various subspaces are treated perturbatively, and the Hamil
tonian in each subspace is modified to include the effects of
these couplings to any desired order. This technique has bee
used in optics and atomic physics studfe$ and recently
has been applied to the study of homonuclear dipole-coupled
spin systems under MAS, with and without® multiple-
pulse homonuclear decoupling. The fraction of crystallites inFlG. 2. The_fraction of crystallites satisfying the perturbation critefigq.
a randomly oriented powder for which E@.2) is satisfied is (_13)] for various values of. The parameters used wely,=3.2 MHz, 7
. . : . . =0, andw,/27=20 kHz. Two thousand crystallite orientations were gener-
given in Fig. 2 as a function ab, for various values oZ. It

h - - ated using the&epuLsiontechnique(Ref. 36, from which the coefficients in
can be seen that as, increases, the fraction of crystallites Eq. (6) were calculated(A) Z=5, and(B) Z=10.

Fraction

0 15 30 45 60
1
2 T (kHZ)
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structed by generating a Hermitian operafosuch that
exp(iS)Hg exp(—iS)=H¢, (13

whereH¢ is an infinite-dimensional, block-diagonal matrix.

The blocks are labeled byiF™, which are the effective

Hamiltonians in the subspad2@}:" . Equation(13) guaran-

Walls et al.

tees that the eigenvalues ldf: andHA¢ are identical to each
other. BothS and H}Y'™ can be expanded in orders of the
coupling between subspaces as follows= S+ )81

+--- and AFM=H{, + AT +N2HE, +--, where A
keeps track of the order of the perturbatlon and is set equal to
one in the actual calculatlon An effective Hamiltonian can
be written W|th|nD M to second order in as

Vidor Valoe  Vics 0 0 0
VT+ q+ VT+ T+ VT+ C+ 0 0 0
BNM_ ( Neo + 3M )i+ Vg:zl,q+ VE 1o V& - A 0 0 0 14
E Wy 2 w1 0 0 0 VE:Z) o +Aw(0) V(l) VE:Z) . 3
o0 0 VB VR e
2 1 2
0 0 0 ve . vl v
|
where coupled directly to the CT coherences by the first-order cou-
O pling VT+ c+ - The relative importance of the direct versus
' indirect coupllngs for five-quantum to CT conversion is dis-
SW=—jx\ cussed later in the numerical simulations section. Finally, as
) ) ) ) a result of the mixing of CT coherence with five-quantum
% 2 [k} ICKIHE[T) 1) (KICTHE[K) and triple-quantum coherences at RR conditions, the excita-
J DM g DM Ej—Ex ' tion efficiencies of both five-quantum and triple-quantum co-
herences have minima at these conditions, as does the effi-
Vi(,l,-)=>\<i|HF|j>, ciency of conversion between five-quantum and triple-
\2 1 1 quantum coherences.
2 =__ i iV ——
V- 3, e e

S+

(15
Explicit expressions for the varlouaé(lj) and V(2J) elements
are given in Appendix C. Sind@%™ is not coupled tdD "'
within HYM | the effective Hamrltonran reduces to two un-
coupled three—state systeniBor thel =3/2 case, the prob-
lem reduced to two uncoupled two-state systems;
{|T+,N,M),|C+ ,N-n,M+1)} and {|T—,N,M),|C—,N
+n,M—1)}.%9

A. Near-RR conditions

Near the RR conditionsw;=(2n/3) w,, the states

B. Away from RR conditions

Away from RR conditions ¢;+ 2nw,) the states
|IT+,N,M) are more weakly coupled to the states
|C+,N’,M’). This enables a stronger mixing between the
states T=,N,M) and|q=,N,M), and the problem may be
simplified further by conS|der|ng only the dynamics in the
four-dimensional  degenerate  subspacé|T=,N,M),
|g=,N,M)}. The energies may be calculated to second order
and the eigenstates to zeroth order in the degenerate sub-
space by diagonalizing the following matrix:

|T+,N,M) become more strongly coupled to the CT coher- . 3M A
- . ANM=| Nw, + — ;|1
ence state$C+,N+n,M=1), since their zeroth-order en- F rt o "1
ergy differenceA »(?) is approximately zero, thus requiring
explicit mixing of these states. As was demonstrated for the Vfﬁ)m V,glﬁ,ﬂ 0 0
| =3/2 case, this degenerate mixing is the basis for conver- v V) 0 0
sions of triple-quantum coherence into CT coherence at RR | et TTeTE
conditions?® Conversion of five-quantum coherence into CT 0 0 V(T{)YF v 0
coherence also is favored at RR conditions. Although there 0 0 vied vie)

exists a second-order coupling?) .. between the five-
gquantum and CT coherences, these coherences can be
coupled indirectly through the triple-quantum coherences:
the five-quantum coherences are coupled directly to th&he explicit diagonalization de-IQ"V' in Eq. (16) gives some
triple-quantum coherences by the first-order couplinginsight into the dynamics away from rotary resonance con-
Vgli)yTt, and in turn the triple-quantum coherences areditions. Defining the following:

(16)
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_ V501(PotiQo)

* (1) RSt
=T+ TF.9% 2 ,

. 2 oo
V2 :5"“1 D PNQ-n—QnP-n
a=.a= 2wr N>0 N ’

Ni[RyS_y— SyR-
(N v(_z +16w%wr2 [ N-—N N N]
' B N>0

9w§—4N2wr2

<

1 o |RuZ+[Sy[?
F—(|Ry|?+ ¥ 2403 ——,
(| 0| |SO| )+ 11\120 9w§_4N2wf

2
. ngJr),qu_V%'Zl T+ 204
Slr‘(0+)_ 21
qu-z q+_v'(l'2-2 T+
2 |v'(r12,q+|2+ > e+
Vi g+
cos 6., ) M
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v VP L —2A
sin(f_)= ,
\/ Ve V) 2
v PP ——————A_
| T - | 2
V1o -
cogh_)= a

-
va v
\/|V(T1) q|2+(q'q—T'T_A)
’ 2

Consider an initial density matrix equal tp but with the CT
Z magnetization neglecte@ince CT magnetization does not
evolve, in the approximation where the CT states are ne-

glected inAMM)

p<0>=NEM 3lla+,N,M)q—,N,M|

+|g—,N,M)¥g+,N,M|]+ 3[|T+,N,M)
X{(T—,N,M|+|T—= ,N,M}T+,N,M|[]. (18

In the absence of the second-order quadrupolar interaction
and resonance offsetg(0) will develop multiple-quantum
coherences with phase Y. Taking ei§)¢&1, the expectation
values for both triple-quantum(i%°)) and five-quantum
((117°)) coherences are

(1273 (t)=—5sin26,,)sin(26_)sin(A _t)sin(A , t)sin(6t) — 3[sirP( 6, )sinP(_)sin((A . — A_ + 8)t) —co( 0., )coS(6_)
Xsin((Ay—A_—8)t)+sir(0,)co(0_)sin((A, +A_+8)t)—co(6,)sir(_)sin(A,+A_—&t)], (19

(157°)(t)=5[sir?(0.,)sirf(6_)sin((A, —A_— d)t)
—coS(0,)coF(0_)sSin((A,—A_+d)t)
+5sirP(6,)co(H_)sin((A,+A_—d)t)
—cog(0,)sif(0_)sSin((A.+A_+d)1)]

—3sin26,)sin(260_)sin(A ,t)sin(A _t)sin(ét).
(20)

sents the energy difference between the stfifess,N,M)
and|T—,N,M)) is close to zero, not only dogd? °)(t)

~0 for all times, but alsq1¥ ®)(t)~0. The terms in the
expectation values proportional to s#t)( oscillate between
positive and negative values, with zeros at roughly
=1inw,, as shown in Figs. @) and 3B). Such behavior
was observed previously in the spir-3/2 case and was a
result of a destructive interference between the various crys-
tallite orientations in a powdered sampfeAdditional zeros
occur due to the other terms in Eq$9) and(20) whenw, is

The triple-quantum and ﬁVE'quantUm excitation effiCienCiesn between%nwr and %nwr; these zeros are especia"y pro-

represented by E¢19) and Eq.(20) are plotted in Figs. @\)
and (B), respectively, as a function ab, and time for a

powdered sample. In the calculatio _(22 T+ Is replaced
with V(Tz+ T+ (as defined in Appendix Owhen near the RR
condltlonSwl Znw,, due to the singularity in the denomi-

nator of_(Tz) 1+ . Note that whené (which roughly repre-

nounced in the case of the five-quantum excitation.
Additionally, conversions between five-quantum and

triple-quantum coherences, i.e;5Q—+3Q and +5Q

— —3Q, are both possible. Starting with initi&l5Q coher-

ence p(0)=1|5/2(—5/2), the expectation values for the

conversions are
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chemical shift anisotropy. These effects can be included by
adding the ternH’(t) to the Hamiltonian in Eq(1), where

H' (1) =HE) (1) + Hofrsert Hesa(t)
4
= 2, Avexd —iNed](|la+)(a=|+]a-)

x{(q+])+Byexgd —iNw t](|]T+)

X(T—=|+|T=WT+]|)+Cnexd —iNw,t]
X(|C+}NC—[+]|C=){C+]). (22)

The various contributions dfi (), Hopser, andHcsa(t) to
the coefficentsAy,By, and Cy, can be found in the

© o literature3*3 For the case when the CT RF Hamiltonian,
@ D 3 3w.13*, is less than or comparable in magnitude to the
® 20 3-4 (CT) subspace component dfi’(t), an interaction
mn e e — [ transformation defined by
(kHz)
3
t
0 > 10 V(t)=T{ex —if dUTHE (L) +3w,1Y *+Col37*
# of Rotor Periods ® [ 0 [ Q ) LX olz ]

FIG. 3. Calculation of(A) 1,—3Q; (B) 1;—5Q; and(C) +5Q—+3Q (23)

coherence conversion, using the reduced effective Hamiltonian treatment
given in Egs.(19—(21). The parameters used we@=3.2 MHz, =0,

and w,/27m=20 kHz. Two thousand crystallite orientations were generated; : ; ;
using therepuLsiontechnique(Ref. 36, from which the coefficients in Eq. is more appropriate than the one used in @g. In this case,

(6) were calculated. These coefficients then were used to evaluatd Bq. the effective field in the 3—4 subspace lies in the X-Z plane,
Negative contours are drawn with a dotted line, and RR conditions aravith variable magnitude and direction. These variations
denoted by a dashed line. {A) and (B), zeros away from RR conditions  c5,;5e a broadening of the RR conditions, since each crystal-
are a result of a destructive interference over the powdered sample. . . . . . . . .
lite will experience a different effective field, leading to dif-
ferent matching conditiong, 5 = \/(3w;)?+ C2=2nw, . In
addition, dephasing of the multiple-quantum coherences will

(+3Q(t))= 3[sir?(,)cod(6,)(1—cog2A 1)) occur under the second-order quadrupolar coupling, leading
) to a decrease in the efficiency of multiple-quantum coher-
+sir’(6_)cos’(¢-)(1—cog2A 1)) ence excitation and transfer.
+5in(26,)sin(26_)sin(A , t) _ For the case where the rf field is stronger than .the mag-
nitude of the 3—4 subspace componenHd{t), the original
X sin(A_t)cog ot)]. (21)  interaction frame defined by E¢) can be used to obtain

It can be seen from this equation that wh&is small, the

+5Q— +3Q pathway is the most efficient, and the5Q

— —3Q pathway is suppressed. Thus, maxima febQ 4

—+3Q are expected at the conditions= 3hw,, wheren H(NT(t)=W*(t)H’(t)W(t) 2 Anexd —iNw,t]
is an odd integer. Thet 5Q— +3Q conversion efficiency N=-4

represented by E@21) is plotted in Fig. 8C) and shows that X (lg+Xq—|+|a=Xq+])
maxima in the conversion efficiency occur in between the _
RR conditions. +Bnexd —iNo (| T+ ) (T—[+[T—=)}T+])

+Cy exf —iNw,t](exp(i3w,t)|C+ ) C—|

+exp(—i3wt)|C—){CH+]). (29
C. Second-order quadrupolar effects, resonance
offsets, and CSA

So far, the treatment has neglected the effects of th@ransforming into Floquet space adds the téffto Eq.(8),
second-order quadrupolar interaction, resonance offsets, amchere
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HE=Ao(|a+)(a—[+[a=){a+]) +Bo(| T+){T—[+|T=XT+])+Co(b?*C+)(C—|+(bN?C—)(C+])
2
+ 3 (A @+ Ay@) M (a+ )| +la=)(a+])+(Boyal+Bu(@h)M) (| T+)(T—[+T=)(T+))

+(C_ya+Cy(@ah™)(b?C+)(C—[+ (DN C—)(C+]). (25

H connects the subspacBg; andDYM via the cou- 4(D)], enhancement of the efficiency is observed at the first
pling of |g+,N,M) and |T+,N,M) with |[g—,N,M) and two RR conditions. In order to test whether the transfer of
|T—,N,M), respectively. In addition, near the conditions 5Q to CT coherence in the effective Hamiltonian treatment is
w;=1nw,, the stateC+,N,M) and [C—,N—n,M+2) due mainly to the direct second-order coupling or to the in-
are degenerate and are directly coupled to each othet/by direct first-order coupling via the triple-quantum coherence
for n= 1,2,3’4_ This he]ps to exp|ain the decrease in effi_StateS, calculations were performed with the second-order
ciency for the spin-locking of the CT coherence in betweercouplings set to zero. The resulting profiles showed little
RR conditions that was reported earftéralthough these change, indicating that the transfer of five-quantum to CT
additional terms complicate the theoretical treatment, in th&oherence occurs indirectly due to a mixing of the five-
past exact numerical calculations on the3/2 system have duantum coherence stategq¢,N,M)) with the triple-
shown that the basic features of RR remain even in theifluantum coherence state¥ ¢,N,M)), which in turn mix

presencé®?° This will be verified for thel =5/2 system in  With the CT coherence state(+,N+n,M=1)). In Fig. 5,
the next section. both the effective Hamiltonian treatmd®A), 5(C)] and the

exact numerical calculations demonstrate that the maxima in
the multiple-quantum excitation efficiencies occur between
Il NUMERICAL SIMULATIONS RR conditions, with additional minima also occurring in be-
Although the effective Hamiltonian in Eq14) can be
diagonalized analytically, the exact solutions are rather com-
plicated and little insight is obtained from them. In order to
test how well the effective HamiltoniaiEq. (14)] describes
the spin dynamics, exact numerical calculations were con-
ducted and compared to the effective Hamiltonian treatment 3o
for a variety of multiple-quantum conversions and excita-
tions. The coefficients in Eq6) were calculated for 2000 @1,
crystallite orientations generated USINGREPULSION 2n

A (kHz)
sampling®® In addition, exp) was approximated as
exp(S)~1+iNSD+0(\?), and therefore

A)

exp( —itHp)=exp —iS)exp —itH p)exp(iS)

~exp(—iHg) —iN[SD), exg —itHg)]. 40
(26)

This transformation is unitary only up to second ordeijn
which for high rf powers leads to errors in the calculation of
the intensities of the coherences created by multiple-quantun 7220
excitations/conversions. In Figs. 4—6, exact numerical simu-H2) |
lations are compared with evolution under the effective
Hamiltonian in Eq.(14) for the cases of multiple-quantum to
CT coherence conversion, multiple-quantum coherence exci-
tation from z magnetization, and five-quantum to triple- 3 10 0 5 10
guantum coherence conversion, respectively. Maxima in the # of Rotor Periods # of Rotor Periods

multiple-quantum conversion efficiencies occur at RR condi-
ple-q FIG. 4. Comparison of exact numerical calculatigB), (D)] with the ef-

tions (F'g' 4), as pred|cted in Sec. Il. Resona.'m ?nhanceme%ctive Hamiltonian treatmer{A), (C)] given by Eq.(14) for the conver-
of the +3Q— + 1Q (CT) coherence conversidifrigs. 4A), sion of multiple-quantum to CT coherence as a function of spin-locking
4(B)] is seen only for the first RR condition; this is most power, »,/2m, and time. The parameters used welg= 3.2 MHz, =0,
likely due to the stronger coupling of tﬂé'i N M> states  @r/2m=20kHz. RR conditions are denoted with a dashed line. Calculation

. . of powder-averaged CT coheren(€y(w,/2m ,t)) from initial [(A), (B)]
to the CT states for large,, thus causing a breakdown in triple-quantum coherencg(0)=12-5, and[(C), (D)] five-quantum coher-

the perturbative treatment and a “smoothing” of the RR CON-gnce p(0)=11-5. Three contour levels are shown(ad) [0.07, 0.14, 0.2}
ditions. For+5Q— + 1Q coherence conversigfigs. 4C), (B) [0.075, 0.15, 0.225 and at[(C),(D)] [0.05, 0.1, 0.1%

30

10
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FIG. 5. Comparison of exact numerical calculat{@B), (D)] with the ef-

fective Hamiltonian treatmerfi(A), (C)] given by Eq.(14) for multiple- FIG. 6. Comparison of exact numerical calculat{g), (D)] with the ef-
quantum coherence creation from as a function of spin-locking power fective Hamiltonian treatmertA), (C)] given by Eq.(14) for the powder-
(wy/2m) and time. The parameters used weig=3.2 MHz, =0, /27 averaged conversion of 5Q coherence tf(A), (B)] —3Q coherence and
=20 kHz. RR conditions are denoted with a dashed line. H@=1, [(©), (D)] +3Q coherence as a function of spin-locking poweg /) and
powder-averaged triple-quantuftd), (B)] (1275 and five-quantunf(C), ~ time. The parameters used wert€y=3.2MHz, =0, and w27

(D)] <|\1(-5> coherences were calculated. Three contour levels, with negative™ 20 kHz. RR conditions are denoted with a dashed line. Three contour
contours represented with dotted lines, are shown-&55, —0.10, 0.35. '63“’1‘;]'3 are shown dtA), (B)][0.05, 0.10, 0.1band af(C), (D)] [0.15, 0.30,

tween RR conditions. The reduced effective Hamiltonianinitial density matricegrepresenting either multiple-quantum
treatment presented in Sec[Figs. 3A), 3(B)] agrees quite coherence oz magnetizationwhile evolving under the sys-
well with the exact numerical simulations. Finally, Fig. 6 tem Hamiltonian during an rf pulse. The experiments, to
indicates that both the effective Hamiltonian treatment andvhich the simulations are compared, were multiple-pulse
the exact numerical calculations agree @A), 6(B)] MQ MAS experiments. For example, the experimental study
+5Q——3Q coherence anB(C), 6(D)] +5Q—+3Q co-  of +5Q—+3Q coherence conversion under RR conditions
herence conversion. The maxima of th&Q— +3Q coher-  utilized a “hard” rf pulse to creater 5Q coherence, a soft
ence conversion efficiency occur roughly in between RR'RR” +5Q—+3Q coherence conversion pulse, a hard
conditions, as was predicted and calculated earlier in Sec. k- 3Q— + 1Q coherence conversion pulse, and a soft selec-
[Fig. 3(C)]. Additionally, maxima of thet 5Q— —3Q coher-  tive inversion pulse to create detectabld Q coherence. In
ence conversion efficiency occur in between RR conditionshis case, the measure of the5Q— +3Q conversion effi-
when3ne,<w;<3nw,, and roughly correspond to the dips ciency was the magnitude of the MQMAS signal as a func-

in the +5Q excitation efficiency. tion of the RR conversion pulse strength and duration.
Single crystallite studies were conducted in order to
eygluate hpw well the theory describes the dynamics of N5, EXPERIMENTAL PARAMETERS
dividual spins as opposed to powder-averaged results. Three
crystallite orientations corresponding #®=10°,45°, and The experiments were performed using a Chemagnetics/
90° were chosen due to their varying dependencast) Varian CMX Infinity 500 spectrometer equipped with a 3.2
on w, . In Fig. 7, exact numerical calculations are comparednm Chemagnetics MAS probe. A 20 kHz spinning speed
to the effective Hamiltonian theory for the conversion of was used for all experiments. TR8AI NMR spectra were
+5Q coherence inte-3Q coherence in single crystallites. obtained at Larmor frequency of 130.3 MHz. Multiple-
The effective Hamiltonian approach gives results f@r quantum coherences were generated using a 150 kHz pulse
=45° and 90° that are quantitatively very close to the exacbf duration 2.3us for +3Q creation and 3.4s for +5Q
numerical simulations, whereas the results g+ 10° are creation, and a 150 kHz 0.4&s pulse was used for 3Q to
less quantitative in nature, although qualitatively correct. +1Q coherence conversion in tRe5Q to +3Q coherence
The numerical simulations were performed by directly RR conversion experiment. The sgiitversion of the MQ-
calculating the amount of coherence created from variousMAS experiment was used. Only 1D MQMAS experi-
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FIG. 7. Comparison of exact numerical calculat{@B), (D), (F)] with the
effective Hamiltonian treatmen(A), (C), (E)] given by Eq.(14) for the
conversion of+5Q coherence to-3Q coherence as a function of spin-
locking power ,/27) and time for three different crystallite orientations.
The parameters used we@,=3.2 MHz, =0, andw,/27=20 kHz. RR
conditions are denoted with a dashed lif@), (B)] 8=10°; [(C), (D)] B
=45°; and[(E), (F)] B=90°. Three contour levels are shown, with dotted
contours indicating negative values, with), (B)][0.2, 0.4, 0.6; [(C), (D)]
[0.3, 0.6, 0.9, and[(E), (F)] [0.25, 0.5, 0.7% Good agreement is obtained
between the theory and simulations for crystallites wti 45° and 90°,

# of Rotor Periods

# of Rotor Periods

whereas the agreement obtained fr 10° is not as good.

ments were performed, with a fixeg interval of 2.8 us to
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the corresponding pulse in the sgljtexperiment. The phase
cycles employed for the-3Q— +1Q and+5Q— +3Q co-
herence conversion pulses are given in Table I. The sample
of aluminum acetylacetonat@ldrich, 99+ %, used without
further purification was ground using a mortar and pestle
before it was packed into a zirconia rotor. The quadrupolar
parameters for this sample have been reported taCge
=3.0 MHz and%=0.1538 Calibration of the RF amplitudes
was performed usma 1 MAICI;(ag) sample.

V. RESULTS AND DISCUSSION

Figure 8 gives the experimental profiles fgk) +5Q
— +3Q coherence conversion arff) +3Q— +1Q (CT)
coherence conversion, respectively. The experimental pro-
files show qualitative agreement with the respective theoret-
ical and numerical results in Figs. 5 and 6. There is a maxi-
mum of triple-quantum conversion efficiency at the first RR
condition; at RR conditions, the triple-quantum states are
strongly coupled to the CT states. As increases, the triple-
gquantum states become more strongly coupled to the CT
states, thus “smoothing” out the RR conditions. This was
observed experimentallyFig. 8B)].

The +5Q— +3Q coherence conversion shows maxima
in between RR conditions, as predicted in Sec. Il. Although
the exact numerical calculation and the effective Hamil-
tonian theory both predict that the most efficient conversion
occurs aroundwq/27=6.5 kHz, the experimental results
give a slightly larger intensity ab,/27~20 kHz (Fig. 8).

This discrepancy is a result of the second-order quadrupolar
coupling, as shown by exact numerical calculation in Fig. 9.
Using larger rf power helps to lessen the effects of the
second-order quadrupolar coupling and resonance offsets,
making the coherence transfer more efficient, as explained
earlier in Sec. Il. The design of low-power sequences that are
robust to offsets, CSA, and second-order quadrupolar cou-
pling therefore would help to improve the efficiencies of
these techniques.

In conventional MQMAS experiments fdr=5/2 qua-

separate the pulses. Experimental profiles of the RR effectdrupolar nuclei, evolution of either the 5Q or +3Q coher-
in +5Q—+3Q coherence and-3Q— +1Q coherence ence followed by evolution of the CT coherence is used to
conversion pulses were obtained by varying the amplitude ofancel the remainingafter MAS) anisotropic second-order

TABLE I. Phase cycles for the-3Q— +1Q and+5Q— +3Q conversion experiments. The labels, 3 4 denote the phase of the pulse or receiver. The
phases are given in degrees. Subscripts indicate the number of repetitions of the phase cycle in the parentheses, brackets, or braces. The46 ate6 and
in the +3Q— +1Q and+5Q— +3Q conversion and phase cycles, respectively.

Experiment Phases Phase list
3Q—1Q con. b1 (0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330)

&2 (0)os

b3 (0)12, (45)12, (90)12, (135)p, (180),, (225)2, (270)2, (315),

b, [(0, 270, 180, 90y, (90, 0, 270, 180), (180, 90, 0, 270), (270, 180, 90, 0)],
5Q—3Q con. b1 (0, 18, 36, 54, 72, 90, 108, 126, 144, 162,

180, 198, 216, 234, 252, 270, 288, 306, 324, 342)

b2 [(0)20, (90)z0, (180)0, (270)0]s

&3 (0)go. (45)g0. (90)g0. (135)g0. (180)go, (225)g0, (270)go, (315)0

Loy (0)6a0

b, {[(0, 270, 180, 90), (180, 90, 0, 27Q)],, [(90, 0, 270, 180Q), (270, 180, 90, Q)],,

[(180, 90, 0, 2703, (0, 270, 180, 9Q)],, [ (270, 180, 90, Q), (90, 0, 270, 18Q],}»
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A
(A) 3 40
30
o @
2n om
kH:
(kHz) *H2) 9
10
(B)
0
# of Rotor Periods
o
2n FIG. 9. Exact numerical calculation ef 5Q— +3Q coherence transfer for
KH a powdered sample, including the effects of the second-order quadrupolar
(kHz) coupling. Twelve-hundred crystallite orientations were chosen. The param-
eters used wer€q,=3.2 MHz, »=0, andw,/2m=20 kHz. RR conditions
are denoted by a dashed line. Contours are drawn at the [©:6/& 0.14,
0.21, 0.28. Fig. 6[(C), (D)] (exact simulation with no second-order qua-
0 2 4 6 drupolar coupling shows the same basic features, although the intensities of
the conversion are smaller here, due to dephasing by the second-order qua-
# of Rotor Periods drupolar coupling.

FIG. 8. Contour plots of the maximum intensity of experimental 1D MQ-

MAS absolute-value spectra, as functions of the rf amplitude and pulse . . .

width of the RR pulse(A) +5Q coherences +3Q coherence conversion. the triple-quantum and CT coherences, and thus in poor spin-

The maximum efficiency for+5Q coherence:+3Q coherence transfer locking efficiency of the CT coherences. Transfer of five-

occurs away from the rotary resonance conditions pf 3nw, forn=1or  quantum to CT coherence also is possible, mostly due to the

2.(B) +3Q coherence: +1Q coherence conversion. fact that the five-quantum Floquet statgs+,N,M) are
directly coupled to the triple-quantum Floquet states

. . . + iti i

guadrupolar interaction. It was shown recently that evolqur]T_’N’M)' In between RR conditions, the triple quantum

and CT Floquet states are only weakly coupled, and thus

f the +5 h followed b luti f the3
of e Q coherence followed by evolution o Q %fficient spin locking is possible. This also enables the co-

coherence can in some cases improve the resolution of tr}] ¢ fer bet i i d triol i
MQMAS by increasing the scaling factor for the chemical erence transier between five-quantum and triple-quantum
coherences to become more effective, by suppressing the

shift and isotropic quadrupolar interactions, a technique . .
called mixed multiple-quantum MASBMMQMAS). 340 The competing triple-quantum to CT coherence pathway. For

efficiency of the + 5Q— +3Q coherence transfer can be multiple-quantum excitations from equilibriummagnetiza-
greatly improved using the low-power conversion pulses int!on’ ma'>t<r|]ma'|r? the efff|]E|¢nC|es ()t(:t;urgRbethgtp RRXSSQ"
between RR conditions, enabling greater sensitivity for thet!ons’ With minimum €friciency at the conditions. -

MMQMAS experiments. Such work will be presented else-t'ona! minima also oceur almos_t _halfwa_y _between the RR
where. conditions. These additional minima, similar to those ob-

served inl = 3/2 systems, are a result of the powder averag-
ing over crystallite orientations, whereas the minima at the
RR conditions are due to direct coupling between the
The theoretical formalism we developed for the spin dy-multiple-quantum and CT coherences. Excitation of five-
namics ofl =3/2 quadrupolar nuclei in the sudden-passagejuantum coherence is a result of the coupling between the
limit?® has been applied successfully to the5/2 case. five-quantum |[g=,N,M) and triple-quantum|T=,N,M)
Transforming into the quadrupolar/central-transition framestates. For+5Q— +3Q coherence conversion, maxima in
clearly shows the conditions at which mixing between thethe efficiency occur roughly halfway between RR conditions;
various spin states occurs, thus enabling the prediction of thihis is a result of the weak coupling between the triple-
various multiple-quantum coherence conversions and excitaguantum and CT coherences, along with a near-degeneracy
tions that occur under conditions of low rf power and fastof the |T=,N,M) states. Our theoretical model was tested
MAS (i.e., the sudden-passage limitBimodal Floquet against exact numerical simulations and compared to experi-
theory was utilized in this frame, and the spin dynamicsment, and the theoretical predictions were found to agree
could be understood by examining the effective Hamiltoniarwith both.
in two three-dimensional subspacéBig. 1). When w; An understanding of the dynamics of quadrupolar nuclei
=Znw, (n integra), the triple-quantum Flogquet states is useful in the design of experiments that optimize the signal
|T+,N,M) and the CT Floquet stat¢€ = ,N+n,M=1) are  produced from various coherence pathways. We are currently
strongly mixed. This results in coherence transfer betweensing our theoretical framework to examine the possibility of

VI. CONCLUSIONS
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using “slow” amplitude and phase modulation in order to sage limit?® However, the same results also can be obtained
enhance multiple-quantum coherence excitations and convelpy using unimodal Floquet theory, where the interaction
sions beyond those obtained by simple spin locking. We alsérame is defined only by the first-order quadrupolar interac-
are developing sequences that are more robust to the secoriibn. In this quadrupolar interaction frame the 3/2 Hamil-
order quadrupolar interaction. tonian under MAS and spin locking is given by

H|NT:2(,L)1|)2(73+\/§(1)1(|;L(72+ |§(74)
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APPENDIX A: QUADRUPOLAR PARAMETERS +By exp(—inrt)(li"‘—l\lfz). (B1)

The coefficients introduced in E¢R) are given by _ o
The time dependence can be removed by transforming into
Floquet space, giving the unimodal Floquet Hamiltonian

Ci=— gsin(ZG)sin(Z,B) 1- gcos(Za)

HE=N'w;+01|C+)(C+ |~y C~)(C|

3
szgsmz(ﬁ) Sin2(ﬁ)+g(0052(ﬁ)+1)005{2a) , ‘[32(01 [(Ag+iBo)(|T+ ) C+[+[T—}C—])
7 +(Ag—iBo)(|C+ ) T+[+[C—NT-]]

Slz—zsimze)sin(ﬁ)sin(Za), .
+N21 @HN[(AN+HIBN) (|T+NC+|+|T=)C—])

.. :
Sp= g Sim(#)cos B)sin2a), + (A= iBN)([CH )T+ +[C=)(T= )]
c +a [(A_y—iB_n)(IC+)T+|+|C—NT-])
wo=2T s (A1)
Q 21(21—-1)’

_ _ +H(A_NFHIB_ (| THNCH[+[T-)XC-D]. (B2
where CQzeZqQ/h is the quadrupolar coupling constant
and 7 is the quadrupolar asymmetry parameter. The Euler ) o
angles(a,3,7) relate the quadrupolar PAS to the rotor-fixed AS In thel =5/2 case, an effective Hamiltonian can be con-
coordinate system, andlrelates the rotor axis to the Zeeman Structed in o;der to help Slmpllfy_the analysis léf . The
field. For the case of MASA=arctan{2). subspacesDyg. =_{|T; ,N),|C= N+n)} are constructed,
wheren is a positive integer that minimizes

APPENDIX B: EQUIVALENCE OF THE UNIMODAL |nwf_w1|
AND BIMODAL FLOQUET HAMILTONIANS \/(nw © )2+ 3w2|A +iB |2'
r— W1 7W1[Mn n

(B3)

As was shown in an earlier work for the casel ef3/2
nuclei, a transformation into bimodal Floquet space can givevhich is analogous to Eq11) for the | =5/2 case. The ef-
quantitative insight into the spin dynamics in the sudden pastective Hamiltonian in eacbY, subspace is given by

V@1 Ve 0 0
NN D s VE 1, VE o +A0® 0 0 o
P 0 0 VR L —Ae® VO | B4

0 0 v V@ L
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whereA w@=w,;—nw, and (AN—IBr)(A_y+iB_y)

—No, '

3
i [ V(Tz_)’T_:ZwiN;tn
V) :_§w22 (AN—IBN)(A_NTIB_N)
T T+ 791~ o1+ Nao» ,

V3w
VI ¢y =VERE =5 (A +iBy),
(ANTIBN)(A_N—IB _y)

— ' V3w
i w1~ No, VI ¢ =VERL =5 (A o HiB ). (B5)
V(CZ) o = §w§ (A HiBy)(A-N—TB_n) In the bimodal Floquet treatment, thie=3/2 Floquet Hamil-
- 4 7N, w1+ No, ’

tonian is given by

HE:w,NUrwl bT[(Ag+iBo)|T—=)}(C—|+(Ag—iBo)|C+)T+|1+b[(Ag+iBg)| T+ ){C+]

+(A0—iBo)|C—)<T—|]+N; (@HNDIL(AN+iBN)[T=)(C—[+(Ay=iBN)[C+)(T+]]

+aMb[(A_y+iB_)|T=)(C—|+(A_y—iB_)|C+)(T+[]+(@"NNb[(Ay+iBy)[T+)(C+|+(Ay—iBy)|C—)

X(T—[]+ab[(A_N+iB_\)|[T+)(C+[+(A_N—iB_\)|C—}T-1}, (B6)
whereb,bf,a,a’ act similarly to the raising and lowering operators defined in @4 An effective Hamiltonian can be

constructed in order to simplify the analysis bI‘E. The relevant subspaces are given [bQ'th{|Ti,N,M>,|Ci,
N¥n,M+1)}, wheren is chosen using EqB3). An effective HamiltonianH}"", is given to second order as

V) 1, V) e 0 0
M— (Nw, + Mawy)1+ VELrs VElei+8® 2 ° 0 , (B7)
0 VC_’C_—Aw(O) v Lo
0 0 v v Lo

where V(% and V(7 are given in Eq.(B5). The effective  APPENDIX C: MATRIX ELEMENTS OF H¥M

Hamlltomans in Eqs(B4) and(B7) differ only by a constant

energy term, and there exists a one-to-one mapping, Neglecting second-order quadrupolar coupling and reso-
[T+,N)~|T=,N,M) and |C*=,NF¥n)«|Cx,N¥n,M nance offset terms, the coefficiefifsy. (15)] of the effective
+1> Therefore it can be seen that the bimodal FloqueHam||t0n|anHN M of Eq (14) are g|Ven exp||c|t|y by
treatment is just a convenient way to keep track of the energy

differences between th& =) states and theC+) states, as

shown in Fig. 10. i * _
9 Ve —y@ _5"01 S PnQ-n—QnP-n
at.at T Tamam T 24 (b N '
Unimodal Floquet States Bimodal Floquet States
7 C+,N 1 _x (1) /(1 _\x(1
L VY 1 =VEE, =V L =vat)
1
T=NMAT+,N,M .
—IT-,N>|T+’N> ——— I >| > . \/gwl( Po+iQo)
= |c-NM|cr,NmD - 2 *
0y
=N
. 2 oo
FIG. 10. Comparison of the unimodal Floquet treatment with the bimodal v = Slwy PNQ-n~QnP-n
Floquet treatment for a spih=3/2. In unimodal Floquet theory, the states T+, T+ 2w, >0 N
|C=,N) are split by energy @,, where w, is the rf field strength. In
bimodal Floquet theory, the staté€=,N) are dressed by thgM) RF (Ry—iISN)(R_N+FiIS_Y)
“oscillator” state, which is used instead to keep track of the energy —Zwi z ,

splitting. N#—n 3w+ No,
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V@ :_5“’)% - PNQ-n—QnP-n
=T 20, 50 N
Ry—1SN)(RoyTISC
12623 (R 3N)( N N)’
N#n Ewl—Nwr
VR o = Ve, =vV2y(Ry+iSy),
VD o =VEL =v20,(R_,+iS_y),
i
V((:]er),CJr:Végrz,)qu: '\;0 (Rin+ny T1S(n+n))
X(P_n+iQ- ) + -
I 1
N MiNo 2, —(N+n)a,
V1007
Ve =Vel-=—7— 2, (RunTiSy-n)
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Diagonalization of Eq(14) in the subspace®}." gives

the eigenvalues to second orderNn

APPENDIX D: +5Q—+30Q DEPENDENCE ON wd/ w,
FOR A SINGLE CRYSTALLITE

Consider the case of a crystallite with the Euler angles

(a,B,y)=(0°,90°,0°) relating its quadrupolar PAS to the

Zeeman field axis. From Appendix A, wg(t)
= wql4 cos(2t), and so
t w
fowQ(t )dt' = 8o, (D1)

Therefore, the coefficients in E¢G) can be written in terms
of spherical Bessel functions as

s(lzf wo(t')dt’ )

R

)exp(—|4Nwt)

X sin

12f0th(t’)dt’)

—i 2 J2N 1(3 )exp(—l[4N 2]w,t)

><005< Gfth(tf)dt,)
0

I=5/2 quadrupolar spin dynamics 531

( )exp(—|4Nw t)sm( foth(t’)dt’>

=i 2 Jon- 1(3 )exp(—|[4N 2]wt). (D2

For this crystallite, the first-order matrix element§? .
for the effective Hamiltonian of Ec{14) are given by

S

2w,

1 —y@@ —\y1 1
VE}JB,T+_Vgr42,q+_V§r2,q V( ) T

(D3)

Consider the +5Q— +3Q coherence transfer away
from rotary resonance conditions. Its efficiency depends on
the magnitude of\/q+ 1+, as shown in Sec. Il. As can be
seen in Fig. 11, the transfer depends rather sensitively on the
ratio 3wg/2w,, with little or no transfer occurring when
3wgl2w, is near a zero of the Bessel functidg(z). This
phenomenon has been studied in the past in the context of
the suppression of tunneling in two-state systems under in-
tense radiation field$:~** A more detailed description con-

@

&30
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0
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1
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# of Rotor Periods

FIG. 11. Exact numerical calculation of the effects of the raiig/w, on
the +5Q— +3Q coherence transfer efficiency for the single crystallite
given by [«,B,y]=[0°,90°,0°. Here, w,/27=20kHz, and an rf field
strength ofw,/2m=8 kHz was chosen in order to be away from any RR
condition. The coupling between the states5/2) and|=3/2) is propor-
tional to the Bessel functiody(Z,), where Z,=3wgldw, . (A) wql2m
=430 kHz, Jo(Z,)=0.1404; (B) wq/27m=50 kHz, Jo(Z,)=—0.4014; and
(C) wqol2m=157.22 kHz,Jo(Z,) = — 8.6X 1075, The coherence transfer in
(C) is practically negligible over this time scale, since the corresponding
is nearly a zero of the Bessel functidg(z).
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