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Theoretical investigations of IÄ5Õ2 quadrupolar spin dynamics
in the sudden-passage regime
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The theoretical approach utilizing bimodal Floquet theory in the quadrupolar/central-transition
interaction frame, presented in an earlier article@J. D. Walls, K. H. Lim, and A. Pines, J. Chem.
Phys.116, 79 ~2002!#, is extended to describe the more complicated spin dynamics ofI 55/2 spin
systems. Rotary resonance effects occur when the strength of the radio-frequency irradiation,v1 ,
matches the sample spinning speed,v r , at the conditionsv15 2

3nv r ~n integral!. At these
conditions, conversions of both triple-quantum and five-quantum coherences to central-quantum

coherence are observed. Between rotary resonance conditions@ 2n
3 v r,v1,@2(n11)#/3v r #,

five-quantum as well as triple-quantum coherences can be created from equilibriumz-magnetization
via a nutation mechanism. In addition, effective transfer between five-quantum and triple-quantum
coherences also is observed in between rotary resonance conditions. These effects have been
investigated theoretically and verified by both numerical calculations and experimental
results. © 2002 American Institute of Physics.@DOI: 10.1063/1.1483256#
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I. INTRODUCTION

Approximately 60 percent of all NMR-active nuclei a
quadrupolar (I .1/2), and due to the high sensitivity of th
nuclear quadrupole moment to local electric field gradien
NMR studies of quadrupolar nuclei have been of great
portance in the study of glasses, minerals, zeolites, and o
inorganic materials in the solid state.1–8 In high magnetic
fields, the first-order quadrupolar interaction has no effect
the frequency of the spectrum’s central transition~CT!, and
its effect may be removed from the satellite transitions
rotor-synchronized magic-angle spinning~MAS!. However,
due to the fact that the quadrupole coupling is in most ca
a large perturbation to the Zeeman energy, the second-o
quadrupolar coupling is non-negligible and broadens the
shapes, thereby limiting the resolution and sensitivity of
NMR experiment. The early dynamic angle spinni
~DAS!9,10 and double-rotation~DOR!11 experiments were de
veloped in order to average away the second-order qua
polar interaction by purely mechanical means, by spinn
the sample about more than one axis. Frydmanet al.12 sub-
sequently proposed the MQMAS technique, which refocu
the anisotropic second-order quadrupolar interaction
evolving under various multiple-quantum coherences wh
magic-angle sample spinning. The necessity of evolving
der various multiple-quantum coherences requires the de
of pulse sequences that are capable of producing the de
excitation and transfers of these coherences in the pres
of a large, time-dependent first-order quadrupolar interact

a!Present address: Chemistry Department, New York University, New Y
NY 10003.

b!Electronic mail: pines@cchem.berkeley.edu
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Therefore, in order to design rf pulses to manipulate quad
polar nuclei for MQMAS spectroscopy, an understanding
the spin dynamics under both RF irradiation and MAS
required.

Vega demonstrated that the spin-locking behavior
quadrupolar nuclei under MAS conditions is drastically d
ferent from that ofI 51/2 nuclei.13,14 The theory of the spin
dynamics forI 51/2 nuclei is relatively well established du
to the fact that the rf field strength is usually much larg
than the time-dependent spin interactions~such as dipole–
dipole coupling and chemical shift anisotropy!, and trans-
forming the Hamiltonian into the rf interaction frame yield
valuable insight. However, the situation becomes quite
ferent for quadrupolar spin systems (I .1/2), since thetime-
dependentquadrupolar interaction typically is much large
than thetime-independentrf field strength under most prac
tical experimental conditions, resulting in unique quadrup
lar spin dynamics. The behavior of quadrupolar systems
been found to depend strongly on the relative magnitude
the rf irradiation,v1 , the sample spinning frequency,v r ,
and the quadrupolar frequency,vQ . An adiabaticity param-
eter,a5 v1

2/v rvQ , was introduced by Vega in order to cha
acterize the spin-locking dynamics.13 In the adiabatic regime
(a@1), where the rf power is high and the spinning speed
low, CT coherences are transferred to multiple-quantum
herences asvQ undergoes zerocrossings during the course
the MAS. The quadrupolar spin dynamics in the sudd
passage regime (a!1), where the rf power is low and th
spinning speed is high, is markedly different from the d
namics in the adiabatic regime. In Vega’s treatment, no tra
fers between CT and MQ coherences are predicted in
sudden-passage limit, and thus the CT coherence

,

© 2002 American Institute of Physics
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efficiently spin-locked for all times during the irradiation
This semiquantitive physical picture has explained succ
fully some of the main features of the spin dynamics t
have been observed in experiments, such as the coher
transfers in the adiabatic regime15 and efficient spin-locking
at certain rf values in the sudden-passage limit. Howeve
has been observed that when the rf power is appropria
matched to the spinning speed at the conditionsv1

54nv r /(2I 11) ~wheren is a positive integer!, the CT co-
herence does not remain spin-locked.16,17Additionally, simi-
lar resonant effects were observed in homonuclear dip
recoupling experiments involving quadrupolar nuclei und
MAS conditions.18 Also, Vosegaardet al.19 reported unusua
spin dynamics forI 53/2 nuclei in the sudden-passage r
gime. At the conditionsv15nv r , an efficient conversion
between CT and triple-quantum coherences occurs in
sudden-passage limit, whereas the excitation efficiency
triple-quantum coherence fromz magnetization is enhance
when in between the resonant conditions at (n/2) v r,v1

,(n11/2)v r . We have recently developed a new theore
cal approach in order to explain the interesting spin dyna
ics in I 53/2 systems using bimodal Floquet theory in
novel interaction frame that combines the CT rf and fir
order quadrupolar interactions.20 We demonstrated that th
basis for the ‘‘rotary resonance’’~RR! effects atv15nv r

was the result of a degenerate mixing of the triple-quant
coherence statesuT6&5(1/&) (u3/2&6u23/2&) with the CT
coherence statesuC6&5 (1/&) (u1/2&6u21/2&) at the con-
ditions v15nv r , whereas triple-quantum excitation wa
found to result from higher-order terms in the Hamilto
ian.

In this paper, we extend our previous study of the s
dynamics of quadrupolar nuclei in the sudden-passage
gime to I 55/2 nuclei. We attempt to gain insight into th
complicated spin dynamics by again developing a bimo
Floquet treatment using an interaction frame that combi
both the CT rf Hamiltonian with the first-order quadrupol
Hamiltonian, only this time evaluating the Floquet Ham
tonian using an effective Hamiltonian treatment.21 This the-
oretical formalism is then compared to exact numeri
simulations. Finally, preliminary experimental data are p
sented on five-quantum to triple-quantum conversion
triple-quantum to single-quantum conversion in theI 55/2
27Al system.

II. THEORY

The Hamiltonian for a spinI 55/2 quadrupolar nucleu
in the rotating frame under MAS and rf irradiation can
written in a fictitious spin-1/2 operator basis22,23 as

H~ t !5HQ
(1)~ t !1H rf

5vQ~ t !@20I Z
122116I Z

223216I Z
425220I Z

526#

13v1I X
3241A5v1@ I X

1221I X
526#

12&v1@ I X
2231I X

425#, ~1!
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wherev1 is the strength of the rf field andv r is the rotor
frequency.HQ

(1)(t) describes the first-order quadrupolar inte
action, andH rf describes the radio-frequency irradiation. T
states are labeled byu1&5umI515/2&, u2&5u13/2&, u3&
5u11/2&, u4&5u21/2&, u5&5u23/2&, and u6&5u25/2&.
The effects of the second-order quadrupolar interacti
chemical shift anisotropy~CSA!, and resonance offset term
will be discussed later in the article. The time-depend
first-order quadrupolar coupling is given by

vQ~ t !5vQ@C1 cos~v r t1g!1C2 cos~2v r t12g!

1S1 sin~v r t1g!1S2 sin~2v r t12g!#, ~2!

whereC1 , C2 , S1 , andS2 depend on the angleu between
the rotor axis and the Zeeman field axis, and on
crystallite-dependent Euler angles@a,b,g# that relate the qua-
drupolar principal axis system~PAS! to the rotor-fixed coor-
dinate system. Expressions forvQ , C1 , C2 , S1 , andS2 are
given in Appendix A.

The propagator for the Hamiltonian is

U~ t !5TH expF2 i E
0

t

H~ t8!dt8G J , ~3!

whereT is the Dyson time-ordering operator. The evaluati
of this propagator is difficult due to the fact that in gene
@H(t),H(t8)#Þ0 for timestÞt8. We previously introduced
a transformation into an interaction frame defined by
first-order quadrupolar Hamiltonian and the CT opera
from the rf Hamiltonian that was found to be useful in d
scribing the spin dynamics in a bimodal Floquet theo
treatment.20 Although such a treatment will be used in th
following discussion, it was shown recently24 for the I
53/2 system that unimodal Floquet theory also can give
same results~the equivalence between the two approache
demonstrated in Appendix B!. The quadrupolar/CT transfor
mation for a spinI 55/2 is

W~ t !5TH expF2 i E
0

t

dt8~HQ
(1)~ t8!13v1I X

324!G J . ~4!

This transformation can be evaluated easily since the
Hamiltonian commutes with the first-order quadrupo
Hamiltonian. The Hamiltonian in this interaction frame
given by
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H INT~ t !5W†~ t !H~ t !W~ t !2 iW†~ t !
dW~ t !

dt
5A5v1F ~ I X

1221I X
526!cosS 12E

0

t

vQ~ t8!dt8D 1~ I Y
5262I Y

122!

3sinS 12E
0

t

vQ~ t8!dt8D G12&v1F H ~ I X
2231I X

425!cosS 3v1t

2 D1~ I Y
2242I Y

325!sinS 3v1t

2 D J cosS 6E
0

t

vQ~ t8!dt8D G
12&v1F H ~ I Y

4252I Y
223!cosS 3v1t

2 D1~ I X
3251I X

224!sinS 3v1t

2 D J sinS 6E
0

t

vQ~ t8!dt8D G
5 (

N52`

`

(
M50,61

HN,M exp~2 iNv r t !expS 2 i
3M

2
v1t D , ~5!

where

cosS 12E
0

t

vQ~ t8!dt8D 5 (
N52`

`

PN exp~2 iNv r t !,

sinS 12E
0

t

vQ~ t8!dt8D 5 (
N52`

`

QN exp~2 iNv r t !,

cosS 6E
0

t

vQ~ t8!dt8D 5 (
N52`

`

RN exp~2 iNv r t !,

sinS 6E
0

t

vQ~ t8!dt8D 5 (
N52`

`

SN exp~2 iNv r t !, ~6!

HN,615&v1@~RN1 iSN!uT7&^C7u1~RN2 iSN!uC6&^T6u#,

HN,05
A5

2
v1@~PN1 iQN!~ uq1&^T1u1uq2&^T2u!1~PN2 iQN!~ uT1&^q1u1uT2&^q2u!#, ~7!
-
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and uT6&5 (1/&) (u2&6u5&), uC6&5 (1/&)(u3&6u4&),
and uq6&5 (1/&)(u1&6u6&) are the triple-quantum coher
ence, central-quantum coherence, and five-quantum co
ence subspaces, respectively. The coefficientsQN , PN , RN ,
andSN are dependent on crystallite orientation.

It can be seen from Eq.~5! that the Hamiltonian is
modulated at the ‘‘natural’’ frequenciesv r due to the sample
rotation and3

2v1 due to the CT rf irradiation. The time de
pendence ofH INT can be removed by a transformation in
Floquet space.25,26 The price to be paid is that instead
working in a finite-dimensional Hilbert space, calculatio
must be performed in an infinite-dimensional Floquet spa
Since this interaction frame has two natural frequencies,
modal Floquet theory must be applied.27 In Floquet space,
the spin statesuC6&, uT6&, uq6& become dressed by state
uN,M & that are labeled by the number of quadrupol
induced rotational ‘‘quanta’’ and CT rf ‘‘quanta,’’ respec
tively, yielding the Floquet statesuC6,N,M &, uT6,N,M &,
and uq6,N,M &. A Floquet Hamiltonian then can be writte
as

HF5v rN
r1

3v1

2
N11~H0,01H0,1b

†1H0,21b!

1 (
N.0

`

@HN,1~a†!Nb†1H2N,1a
Nb†

1HN,21~a†!Nb1H2N,21aNb#, ~8!
er-

e.
i-

-

where the operatorsNr , N1, aN, (a†)N, bN, and (b†)N are
defined by

^p,N,M uNr up8,N8,M 8&5Ndp,p8dN,N8dM ,M8 ,

^p,N,M uN1up8,N8,M 8&5Mdp,p8dN,N8dM ,M8 ,

^p,N,M uanup8,N8,M 8&5dp,p8dN,N82ndM ,M8 ,

^p,N,M u~a†!nup8,N8,M 8&5dp,p8dN,N81ndM ,M8 ,

^p,N,M ubnup8,N8,M 8&5dp,p8dN,N8dM ,M82n ,

^p,N,M u~b†!nup8,N8,M 8&5dp,p8dN,N8dM ,M81n . ~9!

The propagator can be written in Hilbert space in ter
of the Floquet Hamiltonian as28

U~ t !5W~ t !(
N,M

^N,M uexp~2 iH Ft !u0,0&

3exp@ i ~Nv r1
3
2 Mv1!t#. ~10!

The problem arises as to how to evaluate exp(2iHFt). Since
HF is infinite-dimensional, exact diagonalization is possib
in very few cases; therefore, approximations must be ma
Previous techniques have used static perturbation theor
approximate the infinite Floquet Hamiltonian.29,30 However,
consider dividing Floquet space into an infinite number
three dimensional subspacesDS6

N,M , labeled by N and M,
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FIG. 1. Partitioning of the Floquet Hamiltonian into
three-dimensional subspaces.~A! Four such subspaces

DS6
N,M andDS6

N8,M8, are depicted in the figure.~B! Effec-
tive Hamiltonians are calculated within each subspa
treating the coupling to the other subspaces as a per
bation.
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where DS6
N,M5$uq6,N,M &, uT6,N,M &, uC6, N7n, M

61&%, as shown in Fig. 1~A!. Here,n is a positive integer
that minimizes

uDv (0)u

AuDv (0)u21u^T6,N,M uHFuC6,N7n,M61&u2

5
unv r2

3
2 v1u

Aunv r2
3
2 v1u212v1

2uR6n1 iS6nu2
, ~11!

where Dv (0)5nv r2
3
2v1 is the zeroth-order energy differ

ence betweenuT6,N,M & and uC6, N7n, M61&. Equa-
tion ~11! groups together those states that most stron
couple to each other. If the magnitude of the couplings
tween the various subspaces is less than the energy d
ences between these subspaces, i.e.,

u^ i 6
N,MuHFu i 6

N,M&2^ j 6
N8,M8uHFu j 6

N8,M8&u

5u~N2N8!v r1
3
2 ~M2M 8!v1u.Zu^ i 6

N,MuHFu j 6
N8,M8&u,

~12!

for u i 6
N,M&PDS6

N,M, u j 6
N8,M8&PDS6

N8,M8, N, MÞN8, M 8 and Z
.1, then an ‘‘effective Hamiltonian’’ can be constructe
within each subspace. Effective Hamiltonian theory is a p
turbative technique that separates the system into diffe
manifolds DS6

N,M that are weakly coupled to each other,
defined for this case in Eq.~12!. The couplings between th
various subspaces are treated perturbatively, and the Ha
tonian in each subspace is modified to include the effect
these couplings to any desired order. This technique has
used in optics and atomic physics studies21,31 and recently
has been applied to the study of homonuclear dipole-cou
spin systems under MAS, with32 and without33 multiple-
pulse homonuclear decoupling. The fraction of crystallites
a randomly oriented powder for which Eq.~12! is satisfied is
given in Fig. 2 as a function ofv1 for various values ofZ. It
can be seen that asv1 increases, the fraction of crystallite
ly
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d

n

for which the effective Hamiltonian treatment is valid d
creases, due to the fact that the subspacesDS6

N,M are no longer
weakly coupled.

As shown in Fig. 1~B!, an effective Hamiltonian is con

FIG. 2. The fraction of crystallites satisfying the perturbation criterion@Eq.
~12!# for various values ofZ. The parameters used wereCQ53.2 MHz, h
50, andv r /2p520 kHz. Two thousand crystallite orientations were gen
ated using theREPULSIONtechnique~Ref. 36!, from which the coefficients in
Eq. ~6! were calculated.~A! Z55, and~B! Z510.
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structed by generating a Hermitian operatorŜ such that

exp~ iŜ!HF exp~2 iŜ!5ĤF , ~13!

whereĤF is an infinite-dimensional, block-diagonal matri
The blocks are labeled byĤF

N,M , which are the effective
Hamiltonians in the subspaceDS6

N,M . Equation~13! guaran-
n-
-

s

er
-
g
th
ve
R
T
e

n
es
th

in
r

tees that the eigenvalues ofHF andĤF are identical to each
other. BothŜ and ĤF

N,M can be expanded in orders of th
coupling between subspaces as follows:Ŝ5Ŝ(0)1lŜ(1)

1¯ and ĤF
N,M5ĤN,M

(0) 1lĤN,M
(1) 1l2ĤN,M

(2) 1¯ , where l
keeps track of the order of the perturbation and is set equa
one in the actual calculation. An effective Hamiltonian c
be written withinDS6

N,M to second order inl as
ĤF
N,M5S Nv r1

3M

2
v1D 1̂1S Vq1,q1

(2) Vq1,T1
(1) Vq1,C1

(2) 0 0 0

VT1,q1
(1) VT1,T1

(2) VT1,C1
(1) 0 0 0

VC1,q1
(2) VC1,T1

(1) VC1,C1
(2) 2Dv (0) 0 0 0

0 0 0 VC2,C2
(2) 1Dv (0) VC2,T2

(1) VC2,q2
(2)

0 0 0 VT2,C2
(1) VT2,T2

(2) VT2,q2
(1)

0 0 0 Vq2,C2
(2) Vq2,T2

(1) Vq2,q2
(2)

D , ~14!
ou-
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S(0)51̂,

S(1)52 il

3F (
j PDS6

N,M
(

k¹DS6
N,M

uk&^ j u^kuHFu j &2u j &^ku^ j uHFuk&
Ej2Ek G ,

Vi , j
(1)5l^ i uHFu j &,

Vi , j
(2)5

l2

2 (
k¹DS6

N,M
^ i uHFuk&^kuHFu j &F 1

Ej2Ek
1

1

Ei2Ek
G .

~15!

Explicit expressions for the variousVi , j
(1) and Vi , j

(2) elements
are given in Appendix C. SinceDS1

N,M is not coupled toDS2
N,M

within HF
N,M , the effective Hamiltonian reduces to two u

coupled three-state systems.~For the I 53/2 case, the prob
lem reduced to two uncoupled two-state system
$uT1,N,M &,uC1,N2n,M11&% and $uT2,N,M &,uC2,N
1n,M21&%.20!

A. Near-RR conditions

Near the RR conditionsv15(2n/3) v r , the states
uT6,N,M & become more strongly coupled to the CT coh
ence statesuC6,N7n,M61&, since their zeroth-order en
ergy differenceDv (0) is approximately zero, thus requirin
explicit mixing of these states. As was demonstrated for
I 53/2 case, this degenerate mixing is the basis for con
sions of triple-quantum coherence into CT coherence at
conditions.20 Conversion of five-quantum coherence into C
coherence also is favored at RR conditions. Although th
exists a second-order couplingVC6,q6

(2) between the five-
quantum and CT coherences, these coherences ca
coupled indirectly through the triple-quantum coherenc
the five-quantum coherences are coupled directly to
triple-quantum coherences by the first-order coupl
Vq6,T6

(1) , and in turn the triple-quantum coherences a
:

-

e
r-
R

re

be
:
e

g
e

coupled directly to the CT coherences by the first-order c
pling VT6,C6

(1) . The relative importance of the direct versu
indirect couplings for five-quantum to CT conversion is d
cussed later in the numerical simulations section. Finally
a result of the mixing of CT coherence with five-quantu
and triple-quantum coherences at RR conditions, the exc
tion efficiencies of both five-quantum and triple-quantum c
herences have minima at these conditions, as does the
ciency of conversion between five-quantum and trip
quantum coherences.

B. Away from RR conditions

Away from RR conditions (v1Þ 2
3nv r) the states

uT6,N,M & are more weakly coupled to the stat
uC6,N8,M 8&. This enables a stronger mixing between t
statesuT6,N,M & and uq6,N,M &, and the problem may be
simplified further by considering only the dynamics in th
four-dimensional degenerate subspace$uT6,N,M &,
uq6,N,M &%. The energies may be calculated to second or
and the eigenstates to zeroth order in the degenerate
space by diagonalizing the following matrix:

ĤF
N,M5S Nv r1

3M

2
v1D 1̂

1S V̄q1,q1
(2) V̄q1,T1

(1) 0 0

V̄T1,q1
(1) V̄T1,T1

(2) 0 0

0 0 V̄T2,T2
(2) V̄T2,q2

(1)

0 0 V̄q2,T2
(1) V̄q2,q2

(2)

D .

~16!

The explicit diagonalization ofĤF
N,M in Eq. ~16! gives some

insight into the dynamics away from rotary resonance c
ditions. Defining the following:
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V̄q6,T6
(1) 5V̄T7,q7* (1) 5

A5v1~P01 iQ0!

2
,

V̄q6,q6
(2) 5

5iv1
2

2v r
(
N.0

`
PNQ2N2QNP2N

N
,

V̄T6,T6
(2) 52V̄q6,q6

(2) 116v1
2v r (

N.0

`
Ni@RNS2N2SNR2N#

9v1
224N2v r

2

7
4v1

3
~ uR0u21uS0u2!724v1

3 (
N.0

` uRNu21uSNu2

9v1
224N2v r

2 ,

d5
~V̄T1,T1

(2) 2V̄T2,T2
(2) !

2
,

D25AuV̄T2,q2
(1) u21S V̄q2,q2

(2) 2V̄T2,T2
(2)

2
D 2

,

D15AuV̄T1,q1
(1) u21S V̄q1,q1

(2) 2V̄T1,T1
(2)

2
D 2

,

sin~u1!5
V̄q1,q1

(2) 2V̄T1,T1
(2) 22D1

2AuV̄T1,q1
(1) u21S V̄q1,q1

(2) 2V̄T1,T1
(2)

2
2D1D 2

,

cos~u1!5
uV̄T1,q1u

AuV̄T1,q1
(1) u21S V̄q1,q1

(2) 2V̄T1,T1
(2)

2
2D1D 2

,

ie

i-
sin~u2!5
V̄q2,q2

(2) 2V̄T2,T2
(2) 22D2

2AuV̄T2,q2
(1) u21S V̄q2,q2

(2) 2V̄T2,T2
(2)

2
2D2D 2

,

cos~u2!5
uV̄T2,q2u

AuV̄T2,q2
(1) u21S V̄q2,q2

(2) 2V̄T2,T2
(2)

2
2D2D 2

.

~17!

Consider an initial density matrix equal toI Z but with the CT
z magnetization neglected~since CT magnetization does no
evolve, in the approximation where the CT states are
glected inĤF

N,M!

r~0!5 (
N,M

5
2 @ uq1,N,M &^q2,N,M u

1uq2,N,M &^q1,N,M u#1 3
2 @ uT1,N,M &

3^T2,N,M u1uT2,N,M &^T1,N,M u#. ~18!

In the absence of the second-order quadrupolar interac
and resonance offsets,r(0) will develop multiple-quantum
coherences with phase Y. Taking exp(iS)'1̂, the expectation
values for both triple-quantum (^I Y

225&) and five-quantum
(^I Y

126&) coherences are
^I Y
225&~ t !525 sin~2u1!sin~2u2!sin~D2t !sin~D1t !sin~dt !23@sin2~u1!sin2~u2!sin~~D12D21d!t !2cos2~u1!cos2~u2!

3sin~~D12D22d!t !1sin2~u1!cos2~u2!sin~~D11D21d!t !2cos2~u1!sin2~u2!sin~~D11D22d!t !#, ~19!
rys-

o-

nd

e

^I Y
126&~ t !55@sin2~u1!sin2~u2!sin~~D12D22d!t !

2cos2~u1!cos2~u2!sin~~D12D21d!t !

1sin2~u1!cos2~u2!sin~~D11D22d!t !

2cos2~u1!sin2~u2!sin~~D11D21d!t !#

23 sin~2u1!sin~2u2!sin~D1t !sin~D2t !sin~dt !.

~20!

The triple-quantum and five-quantum excitation efficienc
represented by Eq.~19! and Eq.~20! are plotted in Figs. 3~A!
and ~B!, respectively, as a function ofv1 and time for a
powdered sample. In the calculations,V̄T6,T6

(2) is replaced
with VT6,T6

(2) ~as defined in Appendix C! when near the RR
conditionsv15 2

3nv r , due to the singularity in the denom
nator of V̄T6,T6

(2) . Note that whend ~which roughly repre-
s

sents the energy difference between the statesuT1,N,M &
and uT2,N,M &) is close to zero, not only doeŝI Y

225&(t)
'0 for all times, but alsô I Y

126&(t)'0. The terms in the
expectation values proportional to sin(dt) oscillate between
positive and negative values, with zeros at roughlyv1

5 1
3nv r , as shown in Figs. 3~A! and 3~B!. Such behavior

was observed previously in the spinI 53/2 case and was a
result of a destructive interference between the various c
tallite orientations in a powdered sample.20 Additional zeros
occur due to the other terms in Eqs.~19! and~20! whenv1 is
in between1

3nv r and 2
3nv r ; these zeros are especially pr

nounced in the case of the five-quantum excitation.
Additionally, conversions between five-quantum a

triple-quantum coherences, i.e.,15Q→13Q and 15Q
→23Q, are both possible. Starting with initial15Q coher-
ence (r(0)5u5/2&^25/2u), the expectation values for th
conversions are
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^63Q~ t !&5 1
2 @sin2~u1!cos2~u1!~12cos~2D1t !!

1sin2~u2!cos2~u2!~12cos~2D2t !!

6sin~2u1!sin~2u2!sin~D1t !

3sin~D2t !cos~dt !#. ~21!

It can be seen from this equation that whend is small, the
15Q→13Q pathway is the most efficient, and the15Q
→23Q pathway is suppressed. Thus, maxima for15Q
→13Q are expected at the conditionsv15 1

3nv r , wheren
is an odd integer. The15Q→13Q conversion efficiency
represented by Eq.~21! is plotted in Fig. 3~C! and shows that
maxima in the conversion efficiency occur in between
RR conditions.

C. Second-order quadrupolar effects, resonance
offsets, and CSA

So far, the treatment has neglected the effects of
second-order quadrupolar interaction, resonance offsets,

FIG. 3. Calculation of~A! I Z→3Q; ~B! I Z→5Q; and ~C! 15Q→13Q
coherence conversion, using the reduced effective Hamiltonian treat
given in Eqs.~19!–~21!. The parameters used wereCQ53.2 MHz, h50,
and v r /2p520 kHz. Two thousand crystallite orientations were genera
using theREPULSIONtechnique~Ref. 36!, from which the coefficients in Eq.
~6! were calculated. These coefficients then were used to evaluate Eq.~17!.
Negative contours are drawn with a dotted line, and RR conditions
denoted by a dashed line. In~A! and ~B!, zeros away from RR conditions
are a result of a destructive interference over the powdered sample.
e

e
nd

chemical shift anisotropy. These effects can be included
adding the termH8(t) to the Hamiltonian in Eq.~1!, where

H8~ t !5HQ
(2)~ t !1Hoffset1HCSA~ t !

5 (
N524

4

AN exp@2 iNv r t#~ uq1&^q2u1uq2&

3^q1u!1BN exp@2 iNv r t#~ uT1&

3^T2u1uT2&^T1u!1CN exp@2 iNv r t#

3~ uC1&^C2u1uC2&^C1u!. ~22!

The various contributions ofHQ
(2)(t), Hoffset, andHCSA(t) to

the coefficentsAN ,BN , and CN , can be found in the
literature.34,35 For the case when the CT RF Hamiltonia
3v1I X

324 , is less than or comparable in magnitude to t
3–4 ~CT! subspace component ofH8(t), an interaction
transformation defined by

V~ t !5TH expS 2 i E
0

t

dt8@HQ
(1)~ t8!13v1I X

3241C0I Z
324# D J

~23!

is more appropriate than the one used in Eq.~4!. In this case,
the effective field in the 3–4 subspace lies in the X–Z pla
with variable magnitude and direction. These variatio
cause a broadening of the RR conditions, since each cry
lite will experience a different effective field, leading to di
ferent matching conditions,v1

EFF5A(3v1)21C0
25 2

3nv r . In
addition, dephasing of the multiple-quantum coherences
occur under the second-order quadrupolar coupling, lead
to a decrease in the efficiency of multiple-quantum coh
ence excitation and transfer.

For the case where the rf field is stronger than the m
nitude of the 3–4 subspace component ofH8(t), the original
interaction frame defined by Eq.~4! can be used to obtain

H INT8 ~ t !5W†~ t !H8~ t !W~ t ! (
N524

4

AN exp@2 iNv r t#

3~ uq1&^q2u1uq2&^q1u!

1BNexp@2 iNv r t#~ uT1&^T2u1uT2&^T1u!

1CN exp@2 iNv r t#~exp~ i3v1t !uC1&^C2u

1exp~2 i3v1t !uC2&^C1u!. ~24!

Transforming into Floquet space adds the termHF8 to Eq.~8!,
where

nt

d

re



525J. Chem. Phys., Vol. 117, No. 2, 8 July 2002 I55/2 quadrupolar spin dynamics
HF85A0~ uq1&^q2u1uq2&^q1u!1B0~ uT1&^T2u1uT2&^T1u!1C0~b2uC1&^C2u1~b†!2uC2&^C1u!

1 (
N51

2

$~A2NaN1AN~a†!N!~ uq1&^q2u1uq2&^q1u!1~B2NaN1BN~a†!N!~ uT1&^T2u1uT2&^T1u!

1~C2NaN1CN~a†!N!~b2uC1&^C2u1~b†!2uC2&^C1u!. ~25!
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HF8 connects the subspacesDS1
N,M andDS2

N,M via the cou-
pling of uq1,N,M & and uT1,N,M & with uq2,N,M & and
uT2,N,M &, respectively. In addition, near the condition
v15 1

3nv r , the statesuC1,N,M & and uC2,N2n,M12&
are degenerate and are directly coupled to each other byHF8
for n51,2,3,4. This helps to explain the decrease in e
ciency for the spin-locking of the CT coherence in betwe
RR conditions that was reported earlier.17 Although these
additional terms complicate the theoretical treatment, in
past exact numerical calculations on theI 53/2 system have
shown that the basic features of RR remain even in th
presence.19,20 This will be verified for theI 55/2 system in
the next section.

III. NUMERICAL SIMULATIONS

Although the effective Hamiltonian in Eq.~14! can be
diagonalized analytically, the exact solutions are rather co
plicated and little insight is obtained from them. In order
test how well the effective Hamiltonian@Eq. ~14!# describes
the spin dynamics, exact numerical calculations were c
ducted and compared to the effective Hamiltonian treatm
for a variety of multiple-quantum conversions and exci
tions. The coefficients in Eq.~6! were calculated for 2000
crystallite orientations generated usingREPULSION

sampling.36 In addition, exp(iŜ) was approximated a
exp(iŜ)'1̂1ilŜ(1)1O(l2), and therefore

exp~2 i tH F!5exp~2 iŜ!exp~2 i tĤ F!exp~ iŜ!

'exp~2 iĤ F!2 il@Ŝ(1),exp~2 i tĤ F!#.

~26!

This transformation is unitary only up to second order inl,
which for high rf powers leads to errors in the calculation
the intensities of the coherences created by multiple-quan
excitations/conversions. In Figs. 4–6, exact numerical sim
lations are compared with evolution under the effect
Hamiltonian in Eq.~14! for the cases of multiple-quantum t
CT coherence conversion, multiple-quantum coherence e
tation from z magnetization, and five-quantum to triple
quantum coherence conversion, respectively. Maxima in
multiple-quantum conversion efficiencies occur at RR con
tions ~Fig. 4!, as predicted in Sec. II. Resonant enhancem
of the 13Q→11Q ~CT! coherence conversion@Figs. 4~A!,
4~B!# is seen only for the first RR condition; this is mo
likely due to the stronger coupling of theuT6,N,M & states
to the CT states for largev1 , thus causing a breakdown i
the perturbative treatment and a ‘‘smoothing’’ of the RR co
ditions. For15Q→11Q coherence conversion@Figs. 4~C!,
-
n

e

ir

-

n-
nt
-

f
m
-

ci-

e
i-
nt
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4~D!#, enhancement of the efficiency is observed at the fi
two RR conditions. In order to test whether the transfer
5Q to CT coherence in the effective Hamiltonian treatmen
due mainly to the direct second-order coupling or to the
direct first-order coupling via the triple-quantum coheren
states, calculations were performed with the second-o
couplings set to zero. The resulting profiles showed lit
change, indicating that the transfer of five-quantum to
coherence occurs indirectly due to a mixing of the fiv
quantum coherence states (uq6,N,M &) with the triple-
quantum coherence states (uT6,N,M &), which in turn mix
with the CT coherence states (uC6,N7n,M61&). In Fig. 5,
both the effective Hamiltonian treatment@5~A!, 5~C!# and the
exact numerical calculations demonstrate that the maxim
the multiple-quantum excitation efficiencies occur betwe
RR conditions, with additional minima also occurring in b

FIG. 4. Comparison of exact numerical calculation@~B!, ~D!# with the ef-
fective Hamiltonian treatment@~A!, ~C!# given by Eq.~14! for the conver-
sion of multiple-quantum to CT coherence as a function of spin-lock
power,v1/2p, and time. The parameters used wereCQ53.2 MHz, h50,
v r /2p520 kHz. RR conditions are denoted with a dashed line. Calcula
of powder-averaged CT coherence^CX(v r /2p ,t)& from initial @~A!, ~B!#
triple-quantum coherence,r(0)5I X

2 – 5 , and@~C!, ~D!# five-quantum coher-
ence,r(0)5I X

1 – 6 . Three contour levels are shown at~A! @0.07, 0.14, 0.21#;
~B! @0.075, 0.15, 0.225#; and at@~C!,~D!# @0.05, 0.1, 0.15#.
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tween RR conditions. The reduced effective Hamilton
treatment presented in Sec. II@Figs. 3~A!, 3~B!# agrees quite
well with the exact numerical simulations. Finally, Fig.
indicates that both the effective Hamiltonian treatment a
the exact numerical calculations agree for@6~A!, 6~B!#
15Q→23Q coherence and@6~C!, 6~D!# 15Q→13Q co-
herence conversion. The maxima of the15Q→13Q coher-
ence conversion efficiency occur roughly in between
conditions, as was predicted and calculated earlier in Se
@Fig. 3~C!#. Additionally, maxima of the15Q→23Q coher-
ence conversion efficiency occur in between RR conditi
when 1

3nv r,v1, 2
3nv r , and roughly correspond to the dip

in the 15Q excitation efficiency.
Single crystallite studies were conducted in order

evaluate how well the theory describes the dynamics of
dividual spins as opposed to powder-averaged results. T
crystallite orientations corresponding tob510°,45°, and
90° were chosen due to their varying dependences ofvQ(t)
on v r . In Fig. 7, exact numerical calculations are compa
to the effective Hamiltonian theory for the conversion
15Q coherence into13Q coherence in single crystallite
The effective Hamiltonian approach gives results forb
545° and 90° that are quantitatively very close to the ex
numerical simulations, whereas the results forb510° are
less quantitative in nature, although qualitatively correct.

The numerical simulations were performed by direc
calculating the amount of coherence created from vari

FIG. 5. Comparison of exact numerical calculation@~B!, ~D!# with the ef-
fective Hamiltonian treatment@~A!, ~C!# given by Eq.~14! for multiple-
quantum coherence creation fromI Z as a function of spin-locking powe
(v1/2p) and time. The parameters used wereCQ53.2 MHz, h50, v r /2p
520 kHz. RR conditions are denoted with a dashed line. Forr(0)5I Z ,
powder-averaged triple-quantum@~A!, ~B!# ^I Y

2 – 5& and five-quantum@~C!,
~D!# ^I Y

1 – 6& coherences were calculated. Three contour levels, with nega
contours represented with dotted lines, are shown at@20.55,20.10, 0.35#.
n

d

II
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-
ee
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s

initial density matrices~representing either multiple-quantum
coherence orz magnetization! while evolving under the sys
tem Hamiltonian during an rf pulse. The experiments,
which the simulations are compared, were multiple-pu
MQ MAS experiments. For example, the experimental stu
of 15Q→13Q coherence conversion under RR conditio
utilized a ‘‘hard’’ rf pulse to create15Q coherence, a sof
‘‘RR’’ 15Q→13Q coherence conversion pulse, a ha
13Q→11Q coherence conversion pulse, and a soft se
tive inversion pulse to create detectable21Q coherence. In
this case, the measure of the15Q→13Q conversion effi-
ciency was the magnitude of the MQMAS signal as a fun
tion of the RR conversion pulse strength and duration.

IV. EXPERIMENTAL PARAMETERS

The experiments were performed using a Chemagne
Varian CMX Infinity 500 spectrometer equipped with a 3
mm Chemagnetics MAS probe. A 20 kHz spinning spe
was used for all experiments. The27Al NMR spectra were
obtained at Larmor frequency of 130.3 MHz. Multiple
quantum coherences were generated using a 150 kHz p
of duration 2.3ms for 13Q creation and 3.4ms for 15Q
creation, and a 150 kHz 0.45ms pulse was used for13Q to
11Q coherence conversion in the15Q to 13Q coherence
RR conversion experiment. The split-t1 version of the MQ-
MAS experiment was used.37 Only 1D MQMAS experi-

e

FIG. 6. Comparison of exact numerical calculation@~B!, ~D!# with the ef-
fective Hamiltonian treatment@~A!, ~C!# given by Eq.~14! for the powder-
averaged conversion of15Q coherence to@~A!, ~B!# 23Q coherence and
@~C!, ~D!# 13Q coherence as a function of spin-locking power (v1/2p) and
time. The parameters used wereCQ53.2 MHz, h50, and v r /2p
520 kHz. RR conditions are denoted with a dashed line. Three con
levels are shown at@~A!, ~B!# @0.05, 0.10, 0.15# and at@~C!, ~D!# @0.15, 0.30,
0.45#.
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ments were performed, with a fixedt1 interval of 2.8ms to
separate the pulses. Experimental profiles of the RR eff
in 15Q→13Q coherence and13Q→11Q coherence
conversion pulses were obtained by varying the amplitud

FIG. 7. Comparison of exact numerical calculation@~B!, ~D!, ~F!# with the
effective Hamiltonian treatment@~A!, ~C!, ~E!# given by Eq.~14! for the
conversion of15Q coherence to13Q coherence as a function of spin
locking power (v1/2p) and time for three different crystallite orientation
The parameters used wereCQ53.2 MHz, h50, andv r /2p520 kHz. RR
conditions are denoted with a dashed line.@~A!, ~B!# b510°; @~C!, ~D!# b
545°; and@~E!, ~F!# b590°. Three contour levels are shown, with dott
contours indicating negative values, with@~A!, ~B!# @0.2, 0.4, 0.6#; @~C!, ~D!#
@0.3, 0.6, 0.9#; and @~E!, ~F!# @0.25, 0.5, 0.75#. Good agreement is obtaine
between the theory and simulations for crystallites withb545° and 90°,
whereas the agreement obtained forb510° is not as good.
ts

of

the corresponding pulse in the split-t1 experiment. The phase
cycles employed for the13Q→11Q and15Q→13Q co-
herence conversion pulses are given in Table I. The sam
of aluminum acetylacetonate~Aldrich, 991%, used without
further purification! was ground using a mortar and pes
before it was packed into a zirconia rotor. The quadrupo
parameters for this sample have been reported to beCQ

53.0 MHz andh50.15.38 Calibration of the RF amplitudes
was performed using a 1 M AlCl3(aq) sample.

V. RESULTS AND DISCUSSION

Figure 8 gives the experimental profiles for~A! 15Q
→13Q coherence conversion and~B! 13Q→11Q ~CT!
coherence conversion, respectively. The experimental
files show qualitative agreement with the respective theo
ical and numerical results in Figs. 5 and 6. There is a ma
mum of triple-quantum conversion efficiency at the first R
condition; at RR conditions, the triple-quantum states
strongly coupled to the CT states. Asv1 increases, the triple-
quantum states become more strongly coupled to the
states, thus ‘‘smoothing’’ out the RR conditions. This w
observed experimentally@Fig. 8~B!#.

The 15Q→13Q coherence conversion shows maxim
in between RR conditions, as predicted in Sec. II. Althou
the exact numerical calculation and the effective Ham
tonian theory both predict that the most efficient convers
occurs aroundv1/2p56.5 kHz, the experimental result
give a slightly larger intensity atv1/2p'20 kHz ~Fig. 8!.
This discrepancy is a result of the second-order quadrup
coupling, as shown by exact numerical calculation in Fig.
Using larger rf power helps to lessen the effects of
second-order quadrupolar coupling and resonance offs
making the coherence transfer more efficient, as explai
earlier in Sec. II. The design of low-power sequences that
robust to offsets, CSA, and second-order quadrupolar c
pling therefore would help to improve the efficiencies
these techniques.

In conventional MQMAS experiments forI 55/2 qua-
drupolar nuclei, evolution of either the15Q or13Q coher-
ence followed by evolution of the CT coherence is used
cancel the remaining~after MAS! anisotropic second-orde
he
and
TABLE I. Phase cycles for the13Q→11Q and15Q→13Q conversion experiments. The labelsf1,2,3,4,r denote the phase of the pulse or receiver. T
phases are given in degrees. Subscripts indicate the number of repetitions of the phase cycle in the parentheses, brackets, or braces. There are 96640 steps
in the 13Q→11Q and15Q→13Q conversion and phase cycles, respectively.

Experiment Phases Phase list

3Q→1Q con. f1 (0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330)8

f2 (0)96

f3 (0)12 , (45)12 , (90)12 , (135)12 , (180)12 , (225)12 , (270)12 , (315)12

f r @(0, 270, 180, 90)3 , (90, 0, 270, 180)3 , (180, 90, 0, 270)3 , (270, 180, 90, 0)3#2

5Q→3Q con. f1 (0, 18, 36, 54, 72, 90, 108, 126, 144, 162,
180, 198, 216, 234, 252, 270, 288, 306, 324, 342)32

f2 @(0)20 , (90)20 , (180)20 , (270)20#8

f3 (0)80 , (45)80 , (90)80 , (135)80 , (180)80 , (225)80 , (270)80 , (315)80

f4 (0)640

f r $@(0, 270, 180, 90)5 , (180, 90, 0, 270)5#2 , @(90, 0, 270, 180)5 , (270, 180, 90, 0)5#2 ,
@(180, 90, 0, 270)5 , (0, 270, 180, 90)5#2 , @(270, 180, 90, 0)5 , (90, 0, 270, 180)5#2%2



io

f t
a
u

e
i

th
e

y
g

m
th
t

cit
s

ic
ia

s

ee

pin-
e-
the

es
m
hus
co-
tum
the
or

di-
i-
R
b-

ag-
the
the
e-
the

in
s;

le-
racy
ed
eri-
ree

lei
nal
ntly
of

r
polar
am-

-
s of
r qua-

Q-
uls
.
r

528 J. Chem. Phys., Vol. 117, No. 2, 8 July 2002 Walls et al.
quadrupolar interaction. It was shown recently that evolut
of the 15Q coherence followed by evolution of the13Q
coherence can in some cases improve the resolution o
MQMAS by increasing the scaling factor for the chemic
shift and isotropic quadrupolar interactions, a techniq
called mixed multiple-quantum MAS~MMQMAS!.39,40 The
efficiency of the15Q→13Q coherence transfer can b
greatly improved using the low-power conversion pulses
between RR conditions, enabling greater sensitivity for
MMQMAS experiments. Such work will be presented els
where.

VI. CONCLUSIONS

The theoretical formalism we developed for the spin d
namics ofI 53/2 quadrupolar nuclei in the sudden-passa
limit 20 has been applied successfully to theI 55/2 case.
Transforming into the quadrupolar/central-transition fra
clearly shows the conditions at which mixing between
various spin states occurs, thus enabling the prediction of
various multiple-quantum coherence conversions and ex
tions that occur under conditions of low rf power and fa
MAS ~i.e., the sudden-passage limit!. Bimodal Floquet
theory was utilized in this frame, and the spin dynam
could be understood by examining the effective Hamilton
in two three-dimensional subspaces~Fig. 1!. When v1

5 2
3nv r ~n integral!, the triple-quantum Floquet state

uT6,N,M & and the CT Floquet statesuC6,N7n,M61& are
strongly mixed. This results in coherence transfer betw

FIG. 8. Contour plots of the maximum intensity of experimental 1D M
MAS absolute-value spectra, as functions of the rf amplitude and p
width of the RR pulse.~A! 15Q coherence→13Q coherence conversion
The maximum efficiency for15Q coherence→13Q coherence transfe

occurs away from the rotary resonance conditions ofv15
2
3nv r for n51 or

2. ~B! 13Q coherence→11Q coherence conversion.
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the triple-quantum and CT coherences, and thus in poor s
locking efficiency of the CT coherences. Transfer of fiv
quantum to CT coherence also is possible, mostly due to
fact that the five-quantum Floquet statesuq6,N,M & are
directly coupled to the triple-quantum Floquet stat
uT6,N,M &. In between RR conditions, the triple quantu
and CT Floquet states are only weakly coupled, and t
efficient spin locking is possible. This also enables the
herence transfer between five-quantum and triple-quan
coherences to become more effective, by suppressing
competing triple-quantum to CT coherence pathway. F
multiple-quantum excitations from equilibriumz magnetiza-
tion, maxima in the efficiencies occur in between RR con
tions, with minimum efficiency at the RR conditions. Add
tional minima also occur almost halfway between the R
conditions. These additional minima, similar to those o
served inI 53/2 systems, are a result of the powder aver
ing over crystallite orientations, whereas the minima at
RR conditions are due to direct coupling between
multiple-quantum and CT coherences. Excitation of fiv
quantum coherence is a result of the coupling between
five-quantum uq6,N,M & and triple-quantumuT6,N,M &
states. For15Q→13Q coherence conversion, maxima
the efficiency occur roughly halfway between RR condition
this is a result of the weak coupling between the trip
quantum and CT coherences, along with a near-degene
of the uT6,N,M & states. Our theoretical model was test
against exact numerical simulations and compared to exp
ment, and the theoretical predictions were found to ag
with both.

An understanding of the dynamics of quadrupolar nuc
is useful in the design of experiments that optimize the sig
produced from various coherence pathways. We are curre
using our theoretical framework to examine the possibility

FIG. 9. Exact numerical calculation of15Q→13Q coherence transfer fo
a powdered sample, including the effects of the second-order quadru
coupling. Twelve-hundred crystallite orientations were chosen. The par
eters used wereCQ53.2 MHz, h50, andv r /2p520 kHz. RR conditions
are denoted by a dashed line. Contours are drawn at the levels@0.07, 0.14,
0.21, 0.28#. Fig. 6 @~C!, ~D!# ~exact simulation with no second-order qua
drupolar coupling! shows the same basic features, although the intensitie
the conversion are smaller here, due to dephasing by the second-orde
drupolar coupling.
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using ‘‘slow’’ amplitude and phase modulation in order
enhance multiple-quantum coherence excitations and con
sions beyond those obtained by simple spin locking. We a
are developing sequences that are more robust to the sec
order quadrupolar interaction.
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APPENDIX A: QUADRUPOLAR PARAMETERS

The coefficients introduced in Eq.~2! are given by

C152
3

8
sin~2u!sin~2b!F12

h

3
cos~2a!G ,

C25
3

8
sin2~u!Fsin2~b!1

h

3
~cos2~b!11!cos~2a!G ,

S152
h

4
sin~2u!sin~b!sin~2a!,

S25
h

4
sin2~u!cos~b!sin~2a!,

vQ52p
CQ

2I ~2I 21!
, ~A1!

where CQ5e2qQ/h is the quadrupolar coupling consta
and h is the quadrupolar asymmetry parameter. The Eu
angles~a,b,g! relate the quadrupolar PAS to the rotor-fixe
coordinate system, andu relates the rotor axis to the Zeema
field. For the case of MAS,u5arctan(&).

APPENDIX B: EQUIVALENCE OF THE UNIMODAL
AND BIMODAL FLOQUET HAMILTONIANS

As was shown in an earlier work for the case ofI 53/2
nuclei, a transformation into bimodal Floquet space can g
quantitative insight into the spin dynamics in the sudden p
er-
o
nd-

es
t

r

e
s-

sage limit.20 However, the same results also can be obtain
by using unimodal Floquet theory, where the interacti
frame is defined only by the first-order quadrupolar inter
tion. In this quadrupolar interaction frame theI 53/2 Hamil-
tonian under MAS and spin locking is given by

H INT52v1I X
2231)v1~ I X

1221I X
324!

3 cosS E
0

t

dt8 vQ~ t8! D 1~ I Y
3242I Y

122!

3sinS E
0

t

dt 8vQ~ t8! D
52v1I X

2231)v1 (
N52`

`

AN exp~2 iNv r t !

3~ I X
1221I X

324!

1BN exp~2 iNv r t !~ I Y
3242I Y

122!. ~B1!

The time dependence can be removed by transforming
Floquet space, giving the unimodal Floquet Hamiltonian

HF
U5Nrv r1v1uC1&^C1u2v1uC2&^C2u

1
)v1

2 H @~A01 iB0!~ uT1&^C1u1uT2&^C2u!

1~A02 iB0!~ uC1&^T1u1uC2&^T2u!#

1 (
N51

`

~a†!N@~AN1 iBN!~ uT1&^C1u1uT2&^C2u!

1~AN2 iBN!~ uC1&^T1u1uC2&^T2u!#

1aN@~A2N2 iB2N!~ uC1&^T1u1uC2&^T2u!

1~A2N1 iB2N!~ uT1&^C1u1uT2&^C2u!#J . ~B2!

As in the I 55/2 case, an effective Hamiltonian can be co
structed in order to help simplify the analysis ofHF

U . The
subspacesDS6

N 5$uT6,N&,uC6,N7n&% are constructed,
wheren is a positive integer that minimizes

unv r2v1u

A~nv r2v1!21 3
4 v1

2uAn1 iBnu2
, ~B3!

which is analogous to Eq.~11! for the I 55/2 case. The ef-
fective Hamiltonian in eachDS6

N subspace is given by
ĤF
N5Nv r 1̂1S VT1,T1

(2) VT1,C1
(1) 0 0

VC1,T1
(1) VC1,C1

(2) 1Dv (0) 0 0

0 0 VC2,C2
(2) 2Dv (0) VC2,T2

(1)

0 0 VT2,C2
(1) VT2,T2

(2)

D , ~B4!
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whereDv (0)5v12nv r and

VT1,T1
(2) 52

3

4
v1

2 (
NÞ2n

~AN2 iBN!~A2N1 iB2N!

v11Nv r
,

VC1,C1
(2) 5

3

4
v1

2 (
NÞn

~AN1 iBN!~A2N2 iB2N!

v12Nv r
,

VC2,C2
(2) 52

3

4
v1

2 (
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~AN1 iBN!~A2N2 iB2N!

v11Nv r
,

in

ue
rg

da
s

rgy
VT2,T2
(2) 5

3

4
v1

2 (
NÞn

~AN2 iBN!~A2N1 iB2N!

v12Nv r
,

VT1,C1
(1) 5VC1,T1* (1) 5

)v1

2
~An1 iBn!,

VT2,C2
(1) 5VC2,T2* (1) 5

)v1

2
~A2n1 iB2n!. ~B5!

In the bimodalFloquet treatment, theI 53/2 Floquet Hamil-
tonian is given by
HF
B5v rN

r1v1N11
)v1

2 H b†@~A01 iB0!uT2&^C2u1~A02 iB0!uC1&^T1u#1b@~A01 iB0!uT1&^C1u

1~A02 iB0!uC2&^T2u#1 (
N51

`

~a†!Nb†@~AN1 iBN!uT2&^C2u1~AN2 iBN!uC1&^T1u#

1aNb†@~A2N1 iB2N!uT2&^C2u1~A2N2 iB2N!uC1&^T1u#1~a†!Nb@~AN1 iBN!uT1&^C1u1~AN2 iBN!uC2&

3^T2u#1aNb@~A2N1 iB2N!uT1&^C1u1~A2N2 iB2N!uC2&^T2u#J , ~B6!

where b,b†,a,a† act similarly to the raising and lowering operators defined in Eq.~9!. An effective Hamiltonian can be
constructed in order to simplify the analysis ofHF

B . The relevant subspaces are given byDS6
N,M5$uT6,N,M &,uC6,

N7n,M61&%, wheren is chosen using Eq.~B3!. An effective Hamiltonian,ĤF
N,M , is given to second order as

ĤF
N,M5~Nv r1Mv1!1̂1S VT1,T1

(2) VT1,C1
(1) 0 0

VC1,T1
(1) VC1,C1

(2) 1Dv (0) 0 0

0 0 VC2,C2
(2) 2Dv (0) VC2,T2

(1)

0 0 VT2,C2
(1) VT2,T2

(2)

D , ~B7!
so-
where Vi , j
(2) and Vi , j

(1) are given in Eq.~B5!. The effective
Hamiltonians in Eqs.~B4! and~B7! differ only by a constant
energy term, and there exists a one-to-one mapp
uT6,N&↔uT6,N,M & and uC6,N7n&↔uC6,N7n,M
61&. Therefore, it can be seen that the bimodal Floq
treatment is just a convenient way to keep track of the ene
differences between theuT6& states and theuC6& states, as
shown in Fig. 10.

FIG. 10. Comparison of the unimodal Floquet treatment with the bimo
Floquet treatment for a spinI 53/2. In unimodal Floquet theory, the state
uC6,N& are split by energy 2v1 , where v1 is the rf field strength. In
bimodal Floquet theory, the statesuC6,N& are dressed by theuM & RF
‘‘oscillator’’ state, which is used instead to keep track of the ene
splitting.
g,

t
y

APPENDIX C: MATRIX ELEMENTS OF ĤF
N,M

Neglecting second-order quadrupolar coupling and re
nance offset terms, the coefficients@Eq. ~15!# of the effective
HamiltonianĤF

N,M of Eq. ~14! are given explicitly by
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Diagonalization of Eq.~14! in the subspacesDS6
N,M gives

the eigenvalues to second order inl.

APPENDIX D: ¿5Q\¿3Q DEPENDENCE ON vQÕv r
FOR A SINGLE CRYSTALLITE

Consider the case of a crystallite with the Euler ang
(a,b,g)5(0°,90°,0°) relating its quadrupolar PAS to th
Zeeman field axis. From Appendix A, vQ(t)
5 vQ/4 cos(2vrt), and so

E
0

t

vQ~ t8!dt85
vQ

8v r
sin~2v r t !. ~D1!

Therefore, the coefficients in Eq.~6! can be written in terms
of spherical Bessel functions as

cosS 12E
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Dexp~2 i @4N22#v r t !
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0
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vQ~ t8!dt8D
s

5 (
N52`

`

J2NS 3vQ

4v r
Dexp~2 i4Nv r t !sinS 6E

0

t

vQ~ t8!dt8D
52 i (

N52`

`

J2N21S 3vQ

4v r
Dexp~2 i @4N22#v r t !. ~D2!

For this crystallite, the first-order matrix elementsVq6,T6
(1)

for the effective Hamiltonian of Eq.~14! are given by

Vq1,T1
(1) 5VT1,q1

(1) 5VT2,q2
(1) 5Vq2,T2

(1) 5
A5v1

2
J0S 3vQ

2v r
D .

~D3!

Consider the15Q→13Q coherence transfer awa
from rotary resonance conditions. Its efficiency depends
the magnitude ofVq6,T6

(1) , as shown in Sec. II. As can b
seen in Fig. 11, the transfer depends rather sensitively on
ratio 3vQ/2v r , with little or no transfer occurring when
3vQ/2v r is near a zero of the Bessel functionJ0(z). This
phenomenon has been studied in the past in the contex
the suppression of tunneling in two-state systems under
tense radiation fields.41–44 A more detailed description con

FIG. 11. Exact numerical calculation of the effects of the ratiovQ /v r on
the 15Q→13Q coherence transfer efficiency for the single crystall
given by @a,b,g#5@0°,90°,0°#. Here, v r /2p520 kHz, and an rf field
strength ofv1/2p58 kHz was chosen in order to be away from any R
condition. The coupling between the statesu65/2& and u63/2& is propor-
tional to the Bessel functionJ0(Zr), where Zr53vQ/4v r . ~A! vQ/2p
5430 kHz, J0(Zr)50.1404; ~B! vQ/2p550 kHz, J0(Zr)520.4014; and
~C! vQ/2p5157.22 kHz,J0(Zr)528.631026. The coherence transfer in
~C! is practically negligible over this time scale, since the correspondingZr

is nearly a zero of the Bessel functionJ0(z).
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necting these phenomena will be presented in the fut
Even though the size and time dependence of the quadr
lar frequencyvQ(t) ~Appendix A! varies for each crystallite
in a powdered sample, it is a tempting possibility that
properly tuning the spinning speeds and the rf power, p
erential excitations and/or conversions based on the qua
polar frequency could be performed.
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