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A theory of the spin dynamics ¢f= 3/2 quadrupolar nuclei in the sudden-passage limit is discussed
in relation to the recently observed rotational resonafRR) effects on the excitation and
conversion of triple-quantum coherence in the FASTER multiple-quantum magic-angle spinning
(MQMAS) experiment$T. Vosegaard, P. Florian, D. Massiot, and P. J. Grandinetti, J. Chem. Phys.
114, 4618(2001)]. A novel interaction frame, which combines the quadrupolar interaction with the
central transition radio frequency irradiation, is shown to be useful in understanding the complex
spin dynamics at and away from RR conditions. Analytical expressions for the Hamiltonian
obtained from bimodal Floquet theory are included in order to provide insight into the spin
dynamics observed in the FASTER MQMAS experiments. Numerical simulations have been
performed and were found to support the theoretical formalism.2002 American Institute of
Physics. [DOI: 10.1063/1.1421613

I. INTRODUCTION However, at rotational resonan¢BR) conditions given by
wi1=nw, /(I +1/2) (Refs. 6 and Y(wherel is the spin quan-
The study of the spin dynamics of quadrupolar nuclei intum number of the quadrupolar nucleus ani$ an integer,
rotating samples is an important and active area of researgibor spin-locking behavior in the sudden-passage limit is
in solid state nuclear magnetic resonarit®IR). The spin  observed. This phenomenon has not been well understood.
dynamics of a quadrupolar spin under magic-angle spinning  More recently, Vosegaaret al® observed interesting co-
(MAS) conditions is drastically different from that of non- herence transfers ih=3/2 nuclei at low rf power and under
quadrupolar spin systems. The large, time-dependent quadrfast MAS, a technique called the FASTER MQMAS experi-
polar interaction complicates the spin dynamics, renderingnent. They demonstrated that triple-quantum coherence
quadrupolar nuclei unsuitable as a practical magnetizatiogould be created efficiently from triple-quantum
source in the cross-polarization MAS experiments for whichz-magnetization at the conditionsn{ 1)w,<2w;<new,,
efficient spin locking of the magnetization is essential. Inwith minimum efficiency occurring at@, =new, . Addition-
addition, the recently developed high-resolution multiple-ally, triple-quantum coherence was efficiently transferred to
quantum magic-angle spinningdQMAS) techniqué? for  CT coherence at RR conditions; = ne, . This may explain
half-integer quadrupolar nuclei has drawn more attention tehe poor spin-locking efficiency of the CT coherence at RR
the study of the spin dynamics of quadrupolar nuclei, in orconditions. However, a rigorous theoretical treatment is re-
der to improve efficiency of the multiple-quantum excitation quired in order to understand fully the complicated spin dy-
and subsequent conversion to central transition coherencesiamics in the sudden-passage limit. Such an understanding
In 1992, Vega formulated a theory regarding the spin-would be useful in the design of other low rf power multiple-
locking behavior of the central transitid€T) coherence in  quantum excitation and conversion schemes.
quadrupolar spin system$. The theory demonstrated that In this report, we present a new theoretical approach that
the spin-locking behavior is strongly dependent on the relaexplains the two types of coherence transfers exploited in the
tionship between the magnitude of the quadrupolar interacFASTER MQMAS experiment$.An interaction frame in-
tion (wg), the spinning frequencyaf), and the radio fre- volving both the quadrupolar and CT Hamiltonians is used in
quency (rf) field strength (). Vega introduced an order to obtain quantitative insight into the spin dynamics. A
adiabaticity parametera=w§/wqwr, to characterize the perturbative treatment using bimodal Floquet thédsythen
spin-locking behavior as a function of the rf power. In the employed to explore the spin dynamics lef 3/2 nuclei in
adiabatic region, where high rf power is applied under slowmthe sudden-passage regime.
MAS (i.e., a>1), conversion from CT to multiple-quantum
(MQ) transition coherence occurs during the spin-locking||. THEORY
pulse and sample rotation. Such transfers are the basis of tlle
RIACT method used in MQMAS sequences for MQ "~
conversions. Under conditions of low rf power and rapid Under rf irradiation and neglecting resonance offsets and
sample spinning(i.e., the sudden-passage limit whese the second-order quadrupolar interaction, the rotating-frame
<1), the CT coherences are not transferred into MQ coherspin Hamiltonian of a spith=3/2 nucleus during MAS can
ences, thus the CT coherences are effectively spin lockedbe written in a fictitious spir-operatot®!! basis as

Hamiltonian in the interaction frame
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H=0g(D)(17 =157+ VBoy (I3 2+ 13 D+ 2w, 577 =2 o
=Ho(t)+HRL+HET, (1)
where w4 is the rf field strength. The states are labeled as Fraction
|1)=|m=+3/2), [2)=|m=+1/2), [3)=|m=—1/2), and O™t
|4)=|m,=—3/2). The first-order quadrupolar frequency, 0.5 é’-S
wq(t), which is rendered time dependent by MAS, is given
by
wQ(t)Za)Q[Cl COS(a)rH— ’}/)+C2 COS{Zer-Z)/) (\\/\
+S; sin(wt+vy)+S, sin(2w,t+27y)], 0 40 80 120 0 40 g0 120
3 . ,/2r kHz ,/2n kHz
Clz—gsin(ZG)sin(Z,B) 1—§c05{2a)), ®/21= 40 kHz
1.0 10
C,=2 sirt(o)| sit(9)+ L (co2(B)+ 1)cog2a) |, (@)
2 8 3 18 @) Fraction
of sites
/" . .
S1=— 7 sin(20)sin(B)sin(2a), . 3
=— —sirf(#)cog B)siN(2a), wo=27——"—,
S;=— g Sf(O)cos psin2a), - wo=2m
; : 0 40 80 120 160 200 40 80 120 160 200
where Co=e?qQ/h is the quadrupolar coupling constant, 0,27 kHz /27 KHz

and 7 is the quadrupolar asymmetry parameter. The Euler
angles(a,,v) relate the quadrupolar principal axis system toFIG. 1. The fraction of crystallite orientations satisfying Etd) as a func-
the rotor-fixed coordinate system, afiek cos 1(1/\/_) isthe  tion of rf field strength,w,. For =0 andCy=2.43 MHz, 2000 pairs of

owder anglesg, y) were generated using the REPULSION sampliRgf.
magic angle. The propagator for the Hamiltonian is given bypg) The Fourier coefficientdy andBy of Eq. (7) were generated for these

t angles up to/N|=80. Equation(7) was then directly evaluated for each
u)=T ex;{ —if H(t")dt’ |}, (3) orientation. Spinning speeds of,/27=20 kHz [(a),(c)] and w,/27=40
0 kHz [(b),(d)] were examined. The number of crystallites satlsfylng the con-

. . . . dition|[(N—=N") o, = w4|>2|Hy_y/,+4| for all NandN’ are presented i)
whereT is the Dyson time ordering operator. The dynamicS,ng () while those satisfying the condition|(N—N')w,* o]

of spin-3/2 nuclei under spin-locking conditions have been-4|H,_y, .| for all NandN’ are shown ir(c) and(d). RR conditions are
studied in the pa§12 13The dynam|cs of the system are com- shown with a dotted line. A&, increases, the number of crystallites satis-
plicated by the large, time-dependent quadrupolar Hamilfying Ea. (14) decreases.

tonian, which does not commute at different times with the

satellite transition termH3F, of the rf Hamiltonian. In such

cases, a quadrupolar interaction frame has been used in order ¢

to remove the quadrupolar term from subsequent calculations  U(t) :V(t)T{ exp( —i j Ho,cr(t’)dt’ )}

in the new frame. This has been utilized in the past under 0

both stati¢* and MAS condition¥ to explain many phenom- =V()Uq crlt), (5)
ena in systems with large quadrupole interactions. . . . :
Consider an alternative transformation defined by where Uq c1(t) is the propagator in the interaction frame,
generated by the Hamiltonidfg c(t),
t
V(t)=T[ex;<—if [HQ(t')+Hgl]dt’)} . . d(v( )
0 Ho,cr(t) =VI(OH( V() —iVI(t)
t
— i t")dt’ Il*2_|3*4
exp[ J wottravag 21z —f«»l‘[ul 2413 ) cog o)

H 2-3

Xexp( 2Iw1t|X ). (4) +(|\1(73—|\2(74)Sin(a)1t)]
The first exponential term represents the ordinary transfor- t
mation into the quadrupolar frame. The second exponential XCos(f wq(t )dt') —( —I$_4)Cos(wlt)
term is an additional piece involving only the CT spin opera-
tor. Since both terms commute with each other at different 123, y2—4y : t e
times, V(t) can be evaluated easily by simple integration. —(h T )sm(wlt)]sm( fowQ(t ydt }
The inclusion of the CT in the frame transformation makes (6)
the mechanism of RR in quadrupolar spin systems morén this frame, the satellite transitions are modulatedvat
transparent. from the CT Hamiltonian and ab, from the modulation of

Equation(3) can then be rewritten as the quadrupolar interaction under MAS.
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Sincewq(t) = wo(t+27/ w,), Therefore, Eq.6) can be expanded in a Fourier series in
. o both w; and w, to give
cos(f wQ(t’)dt’)= > A, exp—inw,t), *
0 n=-e o Ho.cr= m;l n;w Hnm expl—imojt)exp—inw,t),
t * 8
sin(f wQ(t’)dt’): > B, exp—inwt). ®
0 n=—w where
|
3 o s o s TN s o I
Ho 1= o1 (3 DA (17751 4>Bn+exp(:|5)<<|¢ I HAE (X 1TBY)
V3 o .
Z?wl((An+|Bn)|T+><C+|+(An—|Bn)|Ci><Ti|)), 9

where|T+)=(1/y2)(]1) +|4)) and|C+)=(1//2)(|2) =|3)) are the triple-quantum and CT states, as previously defined by
Vega?® In order to evaluate the propagator of E§), bimodal Floquet theory is utilized. In the past, Floquet theory has been
used in the study quadrupolar nuclei under spin-locking and MASFrom Eq.(8), two natural frequenciesy, (from the
MAS) andw; (from the CT rf, arise in the problem, thus necessitating the use of bimodal Floquet thieotlye next section,
bimodal Floquet theory is used to solve 1dg (), the propagator in the interaction frame.

B. Bimodal Floquet treatment

The time dependence of the Hamiltonian complicates the evaluatith,f(t) since[Hq c1(t),Hg,cr(t’)]#0 for t
#t’ but can be removed by transforming to Floquet space. However, this requires expanding a four dimensional Hilbert space
to an infinite-dimensional Floquet spalddn this space, the spin statépy=|T+),|C+), become “dressed” with the states
[N,M), which are “oscillatorlike” states labeled by the number of quadrupolar-induced rotational quanta and CT rf quanta,
respectively. A Floquet Hamiltonian then can be written

EnmlP.N,MYp,N,M[+ 2 (p[Hop")p.N,M+1)(p’,N,M|
pl

)

o

HFZE 2

p N=—-= M

M s

+(pIHo-1/p")[P.N,M){p’,N,M +1|+n§=)l (pIHn1lp")p.N+n,M+1)(p’,N,M|
+(P[H-n,—1|p")P.N,M)(p",N+n,M+1|+(p[H; _a[p")|[p,.N+n,M—=1)(p",N,M|
+(pIH _n1p")IP.N,M)(p’,N+n,M—1]
@ (10
Hoab +Ho_1b+ X H, (@b’
n=1

— o0

=w,Nr+w1N1+
+H_, ;a"b+H_,a""+H, (@b

whereEy y=w;N+w;M, and the operatorsl, .., are de-  (p,N,M|H,,.,b"|p’,N",M")
fined in Eq.(9). N" andN* act similarly to number operators '
for the rotational and CT quanta, respectively, and the opera- =(P[Hm,=1|P") O, M7 —n
tors,a, a', b, b" act similarly to raising and lowering opera-
tors for the rotational and CT “quanta,” respectively. Their (p,N,M|H, »1(b")"|p’,N’,M")
matrix elements are given by

=(pIHm =1|p") Snnr S w41 -
(p,N,M|w N "+ w;NYp’,N",M")

Equation(3) can then be written as
= Op,p' ONN OM M EN M q ©)

(p,N,M|Hp 1a"p’,N',M") U(t)=V(t)exp(—iHgt). (12

=(PIHm 1) Sy —ndw In the following sections, nondegenerate and degenerate

N,M[H. .(ah"p’ N".M’ perturbatlop theorleslwnl be used to gain quantitative insight

P IFm<a()"1Pp ) into the spin dynamics of quadrupolar nuclei at and away
=(p[Hm +1/P") SN +nBMmr s (11)  from RR conditions.
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1. Away from rotational resonance conditions different sample spinning speeds,/27=20 kHz [(a),(c)]
Away from RR conditions, the statefp,N,M) and ~@and 40 kHz[(b),(d)], with Co=2.43 MHz and7=0. As
tational energies, i.eEyy#En m-1. Therefore, nonde- perturbation criterion decreases with increasing rf power and

generate perturbation theory can be used to evaldatey ~ decreasingug/w, . Also, the larger the ratio abg/w,, the
treating theH, ., terms as a perturbation to th@rN’ more RR conditions will be observed. In addition, dlpS ap-
+ w;N* term. The validity of a perturbation expansion re- pear at the RR conditionsw, = ;. This stems from the fact
quires that the energy difference between the states that afieat the statefT +,N,M) and|C+ NFn,M=1) are degen-
coupled by the perturbation be greater in magnitude than therate, and thereforel must be explicitly diagonalized in
coupling. Formally this requires these subspaces. This results in mixing triple-quantum and
CT states and is the basis for the triple-quantum conversions

|Enm—Enrmr[>ZIHn- e m-w| 19 opserved under RR, as will be discussed in the next section.
for all possible N, M, N’, M’, and Z=1. Since Although the energy difference between the Floquet states is
Hn-n/ ,m—m' IS nonzero only iftM —M'=*1, this gives greater than the coupling between them for the majority of
N crystallite orientations, Fig. 1 indicates that it is not much
[(N=N")or = 01> Z|Hy - 2ol bigger. This means that higher-order terms in the perturba-
NEPR tion treatment must be calculated in order to fully describe
=Z |AN-n£iByonl- (14 the dynamics. In the following treatment, we present calcu-

lations only up to second order. Using the fact that
Figure 1 gives the fraction of crystallite orientations that sat{Hy +1,Hp +,]=0 for all N and P, Hg can be written to
isfy Eq. (14) for Z=2 [(a),(b)] andZ=4 [(c),(d)], under two  second order ds®

0

- . 1 [Hp,sH-p, -
He= 2 2 | X EnulpNMYpNM[+5 > > ——=———=|N,M)(N,M|
N e M | 5 2p===s=%1 Dw,+Sw;

Biw?(117 213" (A_pBp—ApB_p)
wrN+wlM+ E \tz z DD D D

- - D=— 2(Dw,+wy)
:N—E— M—E— 3w3(1374—1273 IN.M)(N.M|
M= o7(ly 5 )(ApA_p+BpB_p)

2(Dwr+ (1)1)

© 0

= 2 2 (oN+@M)(|T+)(T+ |+ [T=)(T=|+[C+)(C+|+|C=)(C—|)IN.M)YN,M|

. z 3iwi(|T+><T+|+|T_><T_|_|C+><C+|_‘C_><C_|)(ADB*D_A’DBD) IN,M)(N,M|

D=—c 4(D(t)r+(l)l)

. B3i(|T=NT—|=|T+XT+[=|C=)}C—[+|C+)}C+])(ApA_p+BpB_

D)|N,M>(N,M|. (15)
4(Dw,+ wq)

To this order of perturbation theory, the eigenstateld pfare  Without the second-order quadrupolar coupling, 8d) in-
given by [T+)[N,M) and |[C*)|N,M). In the absence of dicates that onlyy * is generated for all crystallite orienta-
any second-order quadrupolar coupling and resonance offsafpns, i.e., onlyy-phase triple-quantum coherence is excited
the density matrix at timeis given by for each crystallite. This explains why the creation of triple-
p(t)=3(|%_4 COS(wnutt)—|$_4 sin(wput)) (16) quantum coherence is enhanced away from RR. However,

when halfway between RR conditions, there is a minimum in
the efficiency of triple-quantum coherence creafiddsing

rI}Eq. (17), a distribution forw,; over different crystallites can

with the initial condition p(0)=313"%. This simply de-
scribes the nutation of initial population, given by *, into
triple-quantum coherences. The nutation frequency is give

by be calculated for a powder at various rf field strengths, as
shown in Fig. 2. From this figure, it can be seen that the
o 3wy (A5 +BY) N % 3wi(ApA_p+BpB_p) powder averaged,, should change signs in between RR
nut 2 D=1 D2w?— w? ' conditions. Whenw;~(n+1/2)w,, wn,= 0, with the distri-

(170 bution of w,,; becoming more symmetric abowt, =0, thus
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600 = 160 —
# of @, =~ 450 Hz — &, =-2270 Hz
sites 2r 2n
6 =1320 Hz o = 3040 Hz
a4 300 d 80
==l i in=sil
-3000 0 3000 6000 -3000 ] 3000 6000 9000 12000
700 FIG. 2. The distribution for— wpy
700
I over a powder calculated from
# of _ ] _ Eq. (17) for various w; values. For
sites o, =390 Hz @, =770 Hz 7=0, Co=2.43 MHz, and w/2m
2n 2n =20 kHz, only those crystallites satis-
b c=1320Hz o =2500Hz fying the condition|(N—N')w,* w4
350 e 30 >2|Hn_nr,+1| Were considered from
a set of 2000 powder pointsv,/27
values of(a) 25 kHz, (b) 30 kHz, (c)
35 kHz, (d) 45 kHz, (e)_SO kHz, and
(f) 55 kHz were usedw, /27 is aver-
0 ol age nutation frequency over the pow-
-6000 -3000 0 3000 -12000 -9000 6000 -3000 O 3000 6000 der, ando is the standard deviation.
From the distributions it can be seen
900 180 that the mean value of the distribution
# of _ _ - 1 shifts from positive to negative in be-
. W, = 1800 Hz O, = 4460 Hz tween RR conditions, passing through
sites m %‘n 5600 H | zero roughly midway.
¢ = 1600 Hz = z
C o f o
] 0
<7000 -5000 -3000 -1000 1000 -30000 -20000 -10000 -5000 0 5000
-0,,(Hz) -0, (Hz)
2n 2n

3
degrading the efficiency of the triple-quantum excitation.  Hgeg= &;N"+ w;N*+ — [ (A, +iB )| T+)
This is further investigated in the numerical simulation sec- 2
tion later in the text. X{C+|(@a")"b+(A_,—iB_,)|C+)}T+|a"b"]

V3 .
+ ?wl[(An_an)|C_><T_|(a+)nb
2. Near rotational resonance condlition +(A_,+iB_p)|T=)C—|a"*]. (19
Near RR conditionsrw,~ w,), the state$p,N,M) and

|p",N+Kn,M=K) are degeneratevhereK is an integel,  H, ., which represents the interactions between nonde-
andHg must be diagonalized explicitly in these subspacesgenerate subspaces, is given by

For the perturbation treatment to be valid, the energy differ-

ence between the states in different nearly degenerate sub- B N R .
spaces must be greater than the coupling between those Hnondeg=Hoab™ +Ho1b+Hy (@™)"" +H_, ;a"b

statesHg can be written as
F + > Hy(a")b*+H_, _ja'b
r#n>0

He=Hgegt Hnondeg (18) +H_rvlarb*+H,,_1(a*)'b. (20)

where Heq, Which represents the portion of theg that
must be diagonalized explicitly, is given by Hgeg Can be diagonalized to give
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Hdeg:N;m M;w (Enmt+Ant 5%)|W§,M><\IIIJ\1M|

whereA

+(Enmt+An— 89 [V )Wl
+(Enm—Ant 85) PR m) (Pl
+(Enm—An=36) [Py ) Pr,m
n= (N, — 0,)12, 8, = 3\4A + 3wi|A,+iB,|* and

’

69 =3\J4A3+ 303 A,—iB,|? and

W

¥y

Dy

[y

) =COS 04)|C+,N, M)+ exp( — i o) Sin( 6y

X|T+,N+n,M—1),

M) =Sin(0y)|[C+ N, M) —exp(—i¢y)cog fy)

X | T+ ,N+n,M—1),

M) =09 05)[C—,N,M)+exp —i¢gp)sin(6g)

X|T—,N—n,M+1),

) =SIN(6)|C— N, M) — exp(—i ¢4,)cOS )

X|T—,N-n,M+1),

co% By) = |A,+iB,| |
V(S +AL)2+|A,+iB|?
= J(%Mi%;fl;ﬁisnlz’ (21)
o8 o) «ag—ﬁ;;ﬁ;'n—isnv’
0w «52)—;%2_+A|/:n—isn|2'
expipy) = 7%::1'”, explipgp)= ﬁ.

Starting with initial x-phase CT coherencepg(0)

=12732ymIN,M)(N,M|, the density matrix can be rewrit-

ten as

pr(0)=

12733 IN,M)N,M|
N,M

%2 |C+,N,MYC+,N,M|
M
—|C=,N,M}C—,N,M|
1
> > coS(0y) |V m)
M
X{W il + SIn(09) |V (Yl
+cog Oy)Sin( Oy (¥ g NPl + [P ym)
1
X(Wy D=5 2 c0S(60)| D)
M

XD | +SIM(0) [ )Pyl +c0F )
XSin(0) (| Py )Pyl + [P ( Pyl (22

Walls, Lim, and Pines

pe(t), to the lowest order in perturbation theory is
1 + + ; -
=3 r\;w COS( ) [ M) (Wl + SIP(O4) | W )

X (W ml+cog By )sin(by) (expl(2i g, t) [V \)
Xl +exp( = 2i S5 1) [ W (P rml)

1
5 % CO§(9¢)|®§,M><®§,M|+SM2( 00) | Py )

XDy | +c0g 0g)SIN 0g) (eXP(2i St) [P 1)
XDy | +exp(—2i Sgt) [P uH Py (23

In Hilbert space, the reduced density matrix for the spin is
given by

PO=V(D) 2 2 (NMpe(DIN'M)
M N" M’

Xexp(i(N—=N) o, t+(M—M")w t)VI(t). (24

From the density matrix, the following expectation values
can be calculated:

(X (t=Tracd 1y *p(1)]
= 3SiMP( 0g) COS( Og,)[1—cOg 25531) ]
+ 3SiMP( Oy) coZ( Oy)[ 1— cog 255 1) ],
Iy (1) =Tracd 1y *p(1)]=0, (25)

(137 (1) =Tracd 13 *p(t)]=0.

From this expression, it can be seen only tk@hase triple-
quantum coherencel g( %) is created for each orientation.
The coefficient in front of 1} %) is always positive(l %)
is maximal whenA,,=0 (at RR and is minimal whem\
>1 (away from RR.

CT to triple quantum coherence transfer is also possible
from the initial conditionp(0)=1%"3. TakingA,=0, a simi-
lar calculation shows that, starting withpg(0)
=13733mIN,M)(N,M|, the following expectation values
can be calculated:

(1% (t)=Tracdl} “p(1)]1=0,

(15 () =Tracd 1y *p(1)]
= 3sin( S3t)sin( 5t) cos oy — ¢q), (26)

(137 () =Tracd 13 *p(1)]
= — 3sin( Sy.t)sin( Spt)sin( @y — ¢q).

However, the efficiency fot2 3—11"* is less than that for
127315 * since the polarization vector for the stafds
and|4) lies in theY—Z plane with crystallite-dependent phase
given by oy — ¢4 [EQ. (26)]. That is, although the CT co-
herence is transferred to triple-quantum coherence, cancella-
tion occurs due to powder averaging. This will be verified
numerically in Sec. Ill. In addition, starting with the initial
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with without
a s : d
KT 70 ~
. 6o
N o A — ~ <
5 50 S =
& == —
S > — S s
8 20 — — [
10
FIG. 3. Exact numerical calculation §fa),(d)] |(1*4)],
b & e ) [(0),(&)] (1X™%, and[(c),()] (—1%~%) under rf irradia-
114 } tion along thex direction applied tg(0)=313"4, with
<x >70 [(@,(b),(c)] and without [(d),(e),(f)] considering the
. 60 second-order quadrupolar interaction, as a function of rf
N 50 . power and pulse length. The parameters used in the
5 40 simulation weren=0, andCq=2.43 MHz. A total of
e 1154 crystallite orientations were employed at a
Q 30 w,/2m=20 kHz for the powder average. RR conditions
8’“ 20 are shown with a dotted line. Equally spaced contour
10 levels are showiwith dashed contours indicating nega-
tive values in the following ranges(a) {0.1,0.45, (b)
{-0.3,0.3, (¢c) {-0.15,0.2, (d) {0.15,0.6, (e) {—6
C f X10°%3x 1074, and(f) {—0.3,0.5.
80
1-4
-(Ig* ) 70
60
A
2, 40
q 30
3 20
10

density matrix pg(0)=3lI %’4EN,M|N,M)(N,M|, a similar  the dynamics are more complicated since there are additional
calculation as above gives the following expectation valuestransitions present. Using the above theory, predictions can
_ - be made for the spin locking of the CT. The rotating frame
1—4y\ 4\ 1-4 _
(I (O =Tracdlx “p(1)]=0, Hamiltonian of a quadrupolar spin evolving during MAS

(5 M) =Tracd 13 *p(1)] and spin-locking irradiation, is given by
= — 3sin( St + SHO[SIM( 6y,)cOZ( O4y) H(t)=0o(t)(315—1(1+ 1))+ HRE+(1+ Doyl K.
(28)
- i _ 3ain( SN f—
COS(Gy)SiN(6)]— 3siN( 83t — 351) Upon transforming to the quadrupolar and CT frame, the
X[ SIM?(0y)Sin?(0g) — COS( Oy )cOS(bg) ], satellite transition coherences that are adjacent to the CT
@7 coherence are modulated at a frequeney=[(2I
+1)/4]w,. Therefore, the CT coherences will be trans-
(137 (t)=Tracd 13 *p(1)] formed to adjacent satellite transition coherences wihben
s N . . =[4/(21 +1)]nw, . In accordance with our predictions, pre-
= Jcod Gy t+ SGt)[ oS Oy ) Sir?( 6g) vious studies have found that under these conditions, the
4 SIrA( 60)co( 0.1+ 2cod STt — SNt spin-locking efficiency of the CT is minimain the absence
(By)coS( )]+ 5008 Oy at) of second-order quadrupolar effects Further investiga-
X [COZ(0y)COZ(bg) + SINP( By )SINP(g)]. tions of transfers between CT coherence and nonadjacent

At RR conditions, cosfy)=cos(8q)=sin(fy)=sin(6s) satellite transition coherences are currently under way.

=1/\/2, and hencél¥ #)(t)=0 for all timest at this order
of perturbation theory. Therefore the triple-quantum excita-
tion efficiency is predicted to be minimal at RR conditions. IIl. NUMERICAL SIMULATION RESULTS

C. Spin I>3/2 A. Excitation of triple-quantum coherences

For spinl>3/2, similar predictions are possible. Analo- Figure 3 showg(a),(d)] [(11™%], [(b),(e)] (1x %), and
gous transformations can be made for higher spins. Howevel(c),(f)] (15 %), from the initial conditionp(0)=313"* un-
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FIG. 4. Exact numerical calculation ¢f 137 for the
three crystallite orientation$3=10° (dashed ling
B=45° (dotted ling, and 8=90° (solid line) created
from p(0)=313"* at various rf powersta) 15, (b) 20,
(c) 25, (d) 30, (e) 35, and(f) 40 kHz. The parameters
used in the simulation were,/27= 20 kHz, =0, and
Co=2.43 MHz. In particular, note thad), excitation is
efficient for both3=90° and 8=10°, as contrasted to
excitation at RR conditions itb) (for 8=10° and 45§
and(f) B=10°, 45°, and 90Pwhere the excitation effi-
ciency is minimal.

B=90° when#n=0. For small values of (e.g., 107, wq(t)

spin-locking time and rf field strength. The parameters usedscillates roughly at»,, and for medium values g8 (e.g.,

in this calculation wereCqy=2.43 MHz, =0 with o/27
=20 kHz. Simulations were performed witta),(b),(c)] and

45°), wo(t) oscillates at bothw, and 2w, . Thus, these ori-
entations were chosen to explore what effects different time

without[(d),(e),(f)] the second-order quadrupolar interaction.dependences abq(t) have on the observed triple-quantum
As observed in a previous stuBefficient triple-quantum  excitation.
excitation occurs between RR conditiorte.g., 15 kHz Figure 4 showsg —13~%) for these three crystallite ori-
<wq/27<25 kHz whenw,/27=20 kH2 in the sudden- entations. The second-order quadrupolar interaction is not
passage regime, although the efficiency is minimal at RR andonsidered in the following simulations since it does not af-
roughly halfway in between RR conditionf.e., 2w, fect the basic features of the triple-quantum excitation. From
=nw,). The inclusion of the second-order quadrupolar inter-Eq. (7), it can be shown by expanding in Bessel functions
action does not change the basic dependence of the magmiat for 3=90°,H, .., #0 only whenn is even, whereas for
tude of triple-quantum excitation as a function of rf power, 8=10° and 45°H, ., can be nonzero for alh. At RR
but the overall efficiency of the excitation is then diminishedconditions(e.g., w,/27=20 for 8=10° and 45°Fig. 4(b)]
due to a dephasing of the coherence. As predicted in Eq@nd w4/27=40 kHz for 8=10°, 45°, and 909Fig. 4(f)],
(16), only I\l(‘4 triple-quantum coherence is created in therespectively, the triple-quantum excitation efficiency is
absence of the second-order quadrupolar interaction, asinimal. Away from RR conditions, triple-quantum coher-
shown in Figs. &) and 3f). Also, the powder-averaged nu- ence is created efficiently but with a different optimum con-
tation frequency changes sign in between RR conditionsgition for each crystallite orientatiofFigs. 4a), 4(c), 4(d),
which was predicted in the preceding section. and 4e)]. This results in considerable destructive interfer-
In order to investigate triple-quantum excitation in moreence in the triple-quantum excitation signal, degrading the
detail, simulations were performed for three crystallite orien-overall excitation efficiency for a powdered sample. As seen
tations whose quadrupolar interactions have different timeén Fig. 3, whenw,;~(n+1/2)w,, the efficiency of triple-
dependences. From Eq2), wq(t) oscillates at &, for  quantum excitation is near zero, which is consistent with the
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= X 10 142x10715%, Only the first two RR conditions,
20 ) w1=w, and w;=2w, were observed for these param-
10 eters[(a),(d)], and, as shown ife), only efficient trans-
fer was observed forz >—1%"* [(b),(e)], with (1%~ %)
=0 for all time andw, in the absence of second-order
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predictions made in Sec. Il. Fg=10°, wherewq(t) oscil-  [(c),(f)] (I\l("‘) (with [(a),(b),(c)] and without[(d),(e),(f)]
lates atw,, a change in the sign ab,, is seen between considering second-order quadrupole interaclioo®ated
w1/2m=15 and 25 kHZFigs. 4a) and 4c), respectivel).  from CT coherencel§ *) under the influence of the rf irra-
Similar behavior also was observed f@=90° between diation along thex direction, as a function of rf power and
w1/2m of 35 kHz and 45 kHz. Note also that halfway in gpin-lock time. In contrast to the;~*—11"* transfer, opti-
between RR conditions, i.ew;=(n+1/2)w,, excitation ef-  mum transfer occurs at RR conditions. In the absence of the

ficiency is nonzero for these crystallite orientatioSg.  second-order quadrupolar interaction, only fheomponent
4(c)]; in fact for B=90°, triple-quantum excitation is most 1-4

1 of triple-quantum coherencéy “, is created, which is pre-
efficient atw,/27= 30 kHz. However, the powder average of

. At ot <h i Siton, Triicted from Eq.25). In Fig. 6,(1% *) is shown for the first
the excitation efficiency vanishes near this condition. Thi§, , pr conditions for three crystallite orientations in the

minimum is qualitatively different than those minima occur- absence of second-order quadrupolar interactions. As pre-

ring at RR conditions, which result from a mixing of CT . : . . .
coherence states with triple-quantum coherence staigs dicted in the theory section, effective coherence transfer is
induced at RR condition§.e., w,/27=20 kHz for 8=10°

(27)]. These effects will be discussed in the next section. . o )

Although Eq.(16) predicts a simple nutation away from gnd 45_ and»; =40 kHz for,8=_10 . 45°, and 90t As men-
RR conditions, Fig. 4 indicates that the dynamics are moré'oned in the preceding .sectlon, RR effects °”'¥_°CCW for
complicated. Inclusion of higher-order terms in the perturba3=90° Whenw,=2nw,, i.e., only even RR conditions oc-
tion treatment of Eq(15) would be necessary in order to Cur for this crystallite, whereas both even and odd occur for
quantitatively capture the evolution. Such work is currently3=10° and 45°. Note that in Fig. )3 *)=0 for all crys-
in progress. tallites and for all times, which was predicted from E25).

In Fig. 7,(1% %) was calculated using E(25) for the three
orientations. Figure (3) is in very good agreement with the
exact numerical calculation of Fig.(@. In Fig. 7(b) the
agreement with Fig. ®) is not as good; in particular, the
Figure 5 showg(a),(d)] [(11™%)], [(b),(e)] (1X %), and  predictions ford=10° have little resemblance with the exact

B. Conversion of CT coherence into triple-quantum
coherence
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FIG. 6. Exact numerical calculation 6F;~*) for three orientation3=10° FIG. 7. Calcula_tion oI5 for thltee.orientationzg,s?’:lm (_dashed lings
(dashed ling B=45° (dotted ling, and 3=90° (solid ling)] from 122 at rf ~ £=45" (dotted ling, and 5=90° (solid line)] from I, at rf field strengths
field strengths ofa) w,/27=20 and(b) w,/27=40 kHz in the absence of of (3) w1/277/= 20_andk(b) wl/_ZWz 43 kH_Z using Eq(25). The pargme;:ars
second-order quadrupolar coupling. The parameters used in the simulatigfs€d Werev:/2m=20 kHz, »=0, andCq=2.43 MHz. Equatior(25) is able
were w,/27=20 kHz, =0, andCo=2.43 MHz. Again <|>1<74>>0 for all to predict many of the features in the exact numerical simulation of Fig. 6.
three orientations, as predicted in E5).

] ) ) ) o order quadrupole interaction. As seen from E2f) and Fig.
numerical simulation. Since the theory is just to lowest-g the expectation values of triple-quantum coherence can be
order, higher-order terms are-ex?fzfted to become importagdither positive or negative resulting in a cancellation of the
in order to quantitatively predigix” “)(t). triple-quantum coherence signal in a powdered sample.

Another aspect of the Hamiltonian under RR conditions
is that it can induce coherence transfer betwigerf— 134,
even though thg rf |rrad|atlgf13|s allggg tixedirection. Nu- IV. CONCLUSIONS
merical calculations of théy “«— Iy " transfer were per-
formed in order to confirm these predictions. In Fig. 8, The purpose of this study was to present a theory of the
[l f’4>| was calculated over a powder for two different spin- excitation and conversion between multiple-quantum coher-
ning speedse,/27= 20 kHz[Fig. 8@] andw,/2m=40 kHz  ences in spith=3/2 quadrupolar nuclei in powdered samples
[Fig. 8b)]. Efficient transfer was not observed for almost allin the sudden-passage limit. The theory is applicable to rf
rf powers. irradiation even at RR conditionswg=nw,) and may be
Calculations I$’3HI$’4 were performed for single extended to include resonance offset and second-order qua-
crystallite orientations in order to check if the inefficiency of drupolar effects, as well as potentially generalized to the
the transfer was due to a destructive interference betweeneatment ofl >3/2 nuclei. It may be used to predict the
different crystallite orientations. Figure 9 shows the simula-results of the recent FASTER MQMAS experimehts well
tion results fol 23— 11" transfers at RR conditions, in the as the heretofore-unexplained reductions in spin-locking ef-
absence of second-order quadrupolar interaction and reséieiency of the central transition at rotational resonance
nance offsets. Interestingly, efficient transfer does occur foconditions®’ A complete analytical theory of this sort has
all three crystallite orientations. However, significant de-not been presented elsewhere. In this work, the spin-locking
structive interference across the powder is observed for theg¢amiltonian was first transformed into a novel combined
crystallite orientations even without considering the secondguadrupolar and CT interaction frame and then rendered time
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quadrupole interaction, as a function of the rf power and pulse length. The

parameters used in the simulation weng/27=20 kHz, =0, and Cq FIG. 9. Exact numerical calculation ¢f13~*) for the three orientations
=2.43 MHz. Equally spaced conFour _Ilnes'are shown with b(_etween[,g:loo (dashed ling B=45° (dotted ling, and =90° (solid line)] from
{0.012,0.025 A total of 1154 crystallite orientations were employed in the p(0)=1%72 at rf field strengths ofa) w,/27=20 and(b) w,/27=40 kHz.

simulation, and RR conditions are marked with a dotted line. The parameters used in the simulation werg2w=20 kHz, =0, and
Co=2.4 MHz.

independent via a bimodal Floquet treatment. At this pomt,[he corresponding multiple-quantum conversions. Further

pertgrbatlon theory was used in order to dg§crlbe the Splndytheoretical and experimental studies are currently underway.
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