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A theory of zero-field NMR in high field (ZFHF-NMR) is
described in terms of coherent averaging and irreducible tensors.
The theory is used to determine analytical solutions for the pa-
rameters of the trajectory proposed and used by Tycko. A new
pulse sequence is presented, and optimized solutions for dy-
namic-angle spinning, dynamic-angle hopping, and double-ro-
tation versions of ZFHF-NMR are discussed. © 1994 Academic

Press, Inc.

INTRODUCTION

High-resolution methods in solid-state NMR (/-3) are
generally designed to reduce spectral broadening arising from
anisotropic spin Hamiltonians, often by coherent averaging
of either spatial or spin parameters. Such techniques, which
include magic-angle spinning (MAS) (4-6), dynamic-angle
spinning (DAS), and double rotation (DOR) (7-10), may
be applied to polycrystalline materials, where ordinarily the
signals originating from crystallites with different orientations
would exhibit different resonance frequencies. These fre-
quencies become time-dependent under certain externally
imposed motions, and the signals observed thus can be made
to reflect the isotropic averages of the original interaction
tensors. An entirely different approach to eliminating an-
1sotropy, however, is provided by time-domain zero-field
NMR and NQR (1, 12), in which the sudden removal of
the strong polarizing field renders the Hamiltonian isotropic
by eliminating any preferred direction in space.

One class of time-domain zero-field methods relies on a
field-cycling technique (13, 14) involving a series of steps:
(1) polarization in high field, (2) adiabatic transport of the
sample to an intermediate field of approximately 0.01 T, (3)
a sudden quenching of the intermediate field to precipitate
coherent evolution under an isotropic Hamiltonian, and (4)
transport back to high field for detection. In this way the
evolution of the system in zero field is mapped out indirectly,
point by point, while the initial polarization and subsequent
detection in high field preserve the advantage of high sen-
sitivity. The zero-field spectrum so obtained consists of sharp
spectral lines from whose frequencies the principal values of
the spin interactions can be measured; there is, in principle,
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no broadening attributable to a dispersion of orientation-
dependent resonance frequencies.

For such a method to be effective, however, the sample
must have a sufficiently long relaxation time, T, so as to
maintain the high-field polarization over the course of the
experiment. Another drawback is the difficulty of achieving
selective excitation of a particular nuclear species, inasmuch
as all Larmor frequencies are equal to zero in zero field. To
overcome these problems, one might ask whether it is pos-
sible to directly obtain the equivalent of zero-field spectra in
high field, without ever resorting to field cycling. Indeed, in
a beautiful series of studies (/5-18), Tycko has shown that
this goal can be realized by exploiting the fact that, in a
coupled spatial-spin coordinate system, the high-field spin
Hamiltonian can be represented by a linear combination of
irreducible tensors from rank zero to four. Among these is
the zero-rank tensor, which carries both isotropic and aniso-
tropic information about the spin interactions and transforms
as a scalar operator. This zero-rank tensor is exactly equiv-
alent to the zero-field spin Hamiltonian and consequently
may yield high-resolution spectra. Thus the strategy behind
observing zero-field spectra in high field involves averaging
out the high-rank tensors and leaving only the scalar part of
the total Hamiltonian.

In this paper, we review the theory of zero-field NMR in
high field as originally described by Tycko, using coherent
averaging methods, and then obtain analytical solutions for
the parameters used in Tycko’s pulse sequence. These so-
lutions are useful for achieving high-quality spectra. A new
pulse sequence is presented, and optimized solutions for var-
ious sample spinning and hopping (18, 19) experiments are
discussed.

BRIEF REVIEW OF ZERO-FIELD NMR
IN HIGH FIELD

As a reminder, we follow the arguments of Tycko. A zero-
field dipolar or quadrupolar spin Hamiltonian can be rep-
resented by an inner product of two second-rank tensors:
one reflecting the spatial behavior and the other reflecting
the spin behavior (20). Expressed in terms of irreducible
tensors, the spin Hamiltonian is
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where T, and A4, ,, are components of a second-rank spin
and spatial tensor, respectively. Although Eq. [1] involves
orientation-dependent terms, the whole expression for the
Hamiltonian is, of course, invariant under a full rotation
operation on the spatial and spin operators. However, after
application of a strong external magnetic field along a par-
ticular direction (the z axis) in the laboratory frame, the
rotational symmetry of the spin Hamiltonian is reduced from
SO(3) to C... In other words, the Zeeman interaction is
usually so large that the internal spin Hamiltonian is effec-
tively truncated. To explicitly represent the truncated Ham-
iltonian, we first transform the spin Hamiltonian from the
laboratory frame to the rotating frame (equivalently, the in-
teractive picture) by the unitary operator exp(—i-#¢), where
H, is the Zeeman Hamiltonian. The spin Hamiltonian in
the rotating frame is then time-dependent. According to co-
herent averaging theory, the zero-order average Hamiltonian
contains only the time-independent term of the total spin
Hamiltonian and thus becomes
.# = A;)_,()Tz‘(). [2]
We can reconstruct a scalar Hamiltonian from Eq. [2] by
representing the spin Hamiltonian in terms of a single set of
irreducible tensors, {¥,,,}, which are the product tensors
of 43 ,, and T, ,,. This is equivalent to transforming the spin
Hamiltonian from separate spatial and spin systems into a
single, coupled spatial-spin system. The combined space is
the direct product of the spatial and spin terms, and the
{F,m} transform as tensors in this space. Using the multi-
plication properties of two irreducible tensors (21, 22), we
write the product of the A4, ,, and 73, as

L+h
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==z}

AI.,m. le,mz = [3]

with C(/,, I, m;, m,) being the Clebsch-Gordan coefficients.
Inserting Eq. [3] into Eq. [2] yields

H = z C(Z, 2, l, 0; 0)31,0,

1=0,2,4

[4]

in which no odd-rank tensors appear owing to the symmetry
properties of the spin interaction. The zero-order tensor ¥ oo
is proportional to the scalar Hamiitonian given in Eq. {1],
with a proportionality coefficient of 1/ Vs (which can be cal-
culated from Eq. [4]). In combination with the Clebsch-
Gordan coefficient of F g, 1/ \@, the coeflicient of the scalar
component in Eq. [4] therefore becomes 1/5, causing a cor-
responding fivefold reduction in the resonance frequencies
from those in time-domain zero-field NMR.
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The remaining terms in Eq. [4], being orientation-depen-
dent, cause anisotropic broadening in a powder sample. It
would therefore be desirable to remove these terms from the
Hamiltonian by applying motional-averaging techniques fa-
miliar from high-resolution solid-state NMR, in order to ob-
tain what amounts to zero-field NMR spectra in high field.
However, conventional high-resolution NMR techniques
cannot be directly applied without some modifications, such
as synchronization of the sample rotation with an applied
pulse sequence. In the following paragraphs, we discuss spe-
cifically how such zero-field NMR in high field can be pro-
duced.

A rotation operator in the coupled spatial-spin system is
written as

R(Q) = R(W)P(Dp), [5]
where R(€Q2g) represents a sample rotation and P(Qp) is a
spin rotation arising from RF pulses. All rotation operators
in Eq. [5] are defined by Euler angles: « denotes the spin
angle, 8 the nutation angle, and v the precession angle. Ap-
plication of a rotation operator £ (Q) to the spin Hamilton-
ian (4) yields

/
H= Y T C2,21,0,00D0(D)F . [6]

1=0,2,4 m=-1

where D (V0(Q) are the components of Wigner rotation ma-
trices. Since one of the two indices of the Wigner rotation
matrix components in Eq. [6] is zero, it is possible to discard
v from the three Euler angles involved in the averaging. The
Wigner rotation matrices in Eq. [6] still allow two degrees
of freedom for manipulation of the spin Hamiltonian, how-
ever, via the rotation angle « and the rotation axis angle 8.
Furthermore, we are free to apply more than one rotation
in the coupled spatial-spin system to obtain a zero-order
average spin Hamiltonian given by

C(’ 29 2s ]s 0, O):Dr(rQO(Qk)ng

(7]

where ¢ is a scaling factor (its maximum value being % if
F o0 is normalized), and Q, are the Euler angles of the kth
rotation. Any choice of N and Q; which satisfies Eq. [ 7] will
be a valid trajectory for achieving zero-field NMR in high
field. In order to find the optimum trajectories, however, it
is desirable to have a general procedure analogous to that
used for averaging of second-order quadrupole interac-
tions (9).

Assume that a number of rotations, N,, is applied along
a fixed axis inclined at the angle 8, with respect to the z axis
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in the coupled spatial-spin space. Averaging over the N,
rotations results in truncation of the spin-Hamiltonian Eq.
[6] to

_ |
HB) =~ 2 €22, 1,0,0)d53(80)F 10,

« =024

[8]

in which the d {){())( 8,) are the elements of the reduced Wigner
rotation matrices.

If the applied rotations are discrete (that is, with finite
angle at well-defined times), the sequence must satisfy the
condition

4 o(cimay < [T im0 o]
exp(—imay-) =
s “““lo itm#o,
with rotation angles of
2wk’
% =T [10]

and with the total number of rotations given as N, = [+ 1,
where / is the highest rank of the irreducible tensors in the
spin Hamiltonian. In our case, / = 4 and N, = 5, which
requires that the rotations involved in the truncation of Eq.
[6] possess at least fivefold symmetry.

If the applied rotations are continuous, arising, say, from
sample spinning at a rate w,, then the average over one ro-
tation cycle is

2w 27!'/(.1)r
f exp{ —imw.t)dt =
0 0

where N, = 27/ w, is the normalization factor.

We next choose a suitable set of rotation axes, { 8, }, from
which will follow, after the averaging, the scalar Hamiltonian
given in Eq. [7]. If the rotations are discrete, the set of the
rotation axis angles, { 8x }, must satisfy

ifm=20

1]
itm#0, [

! S C(2,2,1,0,0)d%(8) = o if7=0 [12]
NN, & 70 o DR T g ir# o,

where N is the number of rotation axes. Alternatively, if the
time dependence of the rotation axes is made continuous by
rotating the sample about two or more axes simultaneously,
the condition to obtain a scalar Hamiltonian becomes

—1—C(22[OO)Hd“’(6)= o i [13]
e T )

with N, = 1. Equations [9]-[13] thus present four general
conditions for establishing trajectories capable of affording
zero-field NMR spectra in high field.
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EXACT SOLUTIONS OF TYCKO’S
PULSE SEQUENCE

The first trajectory for obtaining zero-field NMR spectra
in high field was proposed by Tycko (75, 16). In his original
experiment, the sample rotates around an axis inclined at
the angle 8, = 75° with respect to the external field, while
the pulse sequence shown in Fig. | is applied. The pulse
sequence, displaying fivefold symmetry, consists of five
blocks and is synchronized with the sample spinning. Each
block has a phase increment of 72° and contains two pairs
of delta RF pulses. Each pair with two pulses applies a discrete
rotation (along a transverse axis in the rotating frame) to
the spin operators. The phases of the two spin rotation axes
in the kth block are ¢y = 2k + ¢ and @y, = 2ke + ¢o,
where ¢ = w,7 = 36°; 27 is the duration of each block, ¢,
= 0° and ¢, = 158° are the initial phases of the two rotation
axes of the first block, and the nutation angles of all spin
rotations are 8, = 8, = B, = 46°. This pulse sequence pro-
duced a high-resolution zero-field NMR spectrum of a 95%
deuterated solid benzene sample in high field. The spectrum,
for a pair of protons, consists of three spectral lines with
splitting equal to the dipole-dipole coupling constant mul-
tiplied by a scaling factor of 0.089. More solutions for various
spin systems are also given by Tycko in Ref. (17, 18).

Here we express Tycko’s pulse sequence within the frame-
work of the general tensor formalism. We assume that the

A
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FIG. 1. Generalization of Tycko’s trajectory. (A) The rotor cycle. The

sample rotates at an angle S, with respect to the external field, at an angular
velocity w, = 27/ 107. (B) The synchronized pulse sequence. Each block is
phase shifted by 72° from the previous one. (C) Details of one pulse-sequence
block; 8,, 8; are the flipping angles, with phases g2 = 2kp + ¢y, Y =
2ke + ¢,, and ¢ = w,r = 36°.
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sample rotates around a fixed axis oriented at an arbitrary
angle with respect to the external magnetic field and consider
what kind of pulse sequence is needed to make the zero-
order average Hamiltonian a scalar.

According to group theory (23), five orientations equally
distributed over a period of 27 can average to zero tensors
up to fourth rank—with the exception of the zero-rank ten-
sor, which is a scalar. The realization of fivefold symmetry
in this case is accomplished by applying five rotational op-
erations to the spin Hamiltonian in the coupled spatial-spin
system. Each rotation has an increment of 72° in the spin
angle « relative to the previous one, and the average over
the fivefold symmetic operation removes any o dependence
from the Hamiltonian. Practically, this can be implemented
in such a way that one rotational cycle is divided into five
equal arcs separated by 72° increments. Within each arc,
the pulse sequence shown in Fig. 1c is applied to the spin
operators of the Hamiltonian. This sequence consists of four
pulses and involves two discrete spin—rotation operators with
fixed rotation-axis angles (the nutation angles, 8). According
to average Hamiltonian theory (/, 2), we are not concerned
with the exact trajectory of the Hamiltonian during one
spinning period. What is important, however, are the initial
and final values of the spatial tensors over this time, and
these two values are obviously dependent on both the spin-
ning speed and the initial position of the sample. As was
described in the last section, in order to form a scalar Ham-
iltonian, the spin tensors should have the same values as
those of the spatial tensors at the beginning and at the end
of a period. This is the reason why two discrete rotation
operators for the spin operators in the Hamiltonian are
needed: one is used to control the initial phase, and the other
determines the final phase of the spin tensors in each rotation
cycle.

The propagator associated with the pulse sequence applied
during the kth rotation of a period is

Li(7) = exp(—iBal,,,,)exp[ —iHy . (1))
X exp(iBal,,,, Yexp(—iB.1,,)

X exp[—iHu(7))exp(iBi1,,), [14]

where

Yu = 2ke + ¢,
O = 2ke + ¢

¢ = o7 = 36°, [15]

and where the phases ¢, and ¢, are constant for each pulse.
The zero-order average Hamiltonian, (1), over the sam-
ple spinning in the time interval 7 is
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%(7) = Z Bm(T)exP(—ikmer)AZ,mTZ,Os

m

[16]

for which
B.(r) (i/mw)[exp(—imw,r) — 11d2)(B;) form# 0
m(T)=
dio (BT form =0,
(17]

and g, is the angle of the rotation axis with respect to the
external field.

By the end of a cycle, the total propagator under zero-
order approximation is

4
L(ro) =[] Lil7) = exp(—iH 7).

k=0

[18]
Since

4 [0 ifm+m #0
> exp[—ik(m + m')¢] = [19]

k=0 5 fm+m’ =0,

Eqs. [14]1-[17] _allow us to write the total zero-order average
Hamiltonian, #, as

4
# -1 > Bm{Z eXp[—ik(m+m')¢]}

Te mm’ k=0
X [exp(—im’ ¢ )d 5 o(B1)

+ exp[—i(mwr + m’ $3)1d % 0(82)] Az Tome
5
= = 2 B_nlexp(—ime))diib(8)

+ exp[—im(¢, — wr)1d5h(82)1 42 -mTom. [20]
From Eq. [20], the zero-order average Hamiltonian becomes
a scalar operator only if

5
- B_,[exp(—im¢,)d$3h(B))

<

+ exp[—im(d, — w7)]1dFEH(B2)] = (—1)"0,

m=-=-2,...,2, [21]
where o is a scaling factor. In Eq. [21], there are six unknowns
(8., 81, B2, @1, ¢2, o) and five complex simultaneous equa-
tions for different m. Due to the symmetry of Wigner rotation
matrices, only three equations are independent, which can
be written as five real simultaneous equations (for m = 0,
the equation is already real). Only five unknowns can be
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determined by these equations, and therefore one out of the
six unknowns is as a free variable. By redefining the phase
variables as

G =¢ - %‘P
b3 = ¢ — 30, [22]

where ¢ = w,7 = 36°, it is possible to express the five real
equations as

S A6 + dB] = 0

5 . (1
o Siﬂ(i <P)d(»21),0(5r)[d5.20)(51)COS((M)
+d{D(B)cos(¢3)] = o

5 .
e sin(@)d 3o(8:)[d¥0(B1)cos(2¢})

+ dSo(Br)cos(2¢3)] = o
diD(B1)sin(¢1) + diF(Ba)sin(d3) = 0

di9(B))sin(261) + dSo(By)sin(2¢5) = 0. [23]

Equation [23] can be easily solved in the case of 8, = 3, =
B,, with the solution determined by a quadratic equation

x4+ Bx+C=0, [24]
in which
x = tan?(B,)
1715 ,
B= —[— sin(¢)cos(2¢1) — I}C— 2
2| 2n
_ 16 cos?(¢})
~ cos?(3¢)cos?(2¢7) [23]

and where ¢ is a free parameter that can take any value
between 0 and 2x. After obtaining 3, from Eqgs. [24] and
[25], we can calculate the other two variables, 8, and ¢,
as

tan(B,)tan(B,) = £VC

¢2=—¢1. [26]
Moreover, from Eq. [25], it follows that the coeflicients B
and C have a period of 7 with respect to the ¢ 1; that is, the
values of B and C at ¢ are the same as those at ¢ ] + .
Figure 2 shows 3,, 8,, and o as functions of ¢ ;. From the
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FI1G. 2. Exact solutions of 8,, 8, (8, = 8, = 8,) and ¢ as functions of
the free variable ¢ | in period [0°, 180°]. The zero-order average Hamiltonian
is a scalar operator attenuated by a factor of ¢ relative to the untruncated
internal spin Hamiltonian for each set of ¢1, 8,, and 8,.

figure it can be clearly seen that solutions of 3., 8,. and o
exist only in the region of ¢ | € (32.69°, 147.31°). In prin-
ciple, solutions of 3, and B, are interchangeable, but for
practical convenience we define the angle of the sample ro-
tation axis, G;, to be in the range of 0° to 90°. The pulse
angle 3, has two sets of solutions varying from —71° to 71°,
and each set exhibits an inverse symmetry about 8, = 0°
and ¢’ = 90°. The solutions of 8; and ¢ are symmetric around
¢’ = 90°,

The largest absolute value of the scaling factor ¢ is located
at¢; = —¢; = 32.689° or ¢, = 50.689° and ¢, = 21.311°,
with 8, = 8, = 71.064°. At this point, ¢ = 0.117. A more
stable solution at which the first-order derivative of the scaling
factor to the free variable is zero is found at 8, = 69.505°,
B, = 42.864° and ¢, = 84.375°, ¢, = —12.375°, where ¢ =
—0.0966. Another stable solution corresponds to the magic
angle, at which ¢ = 0.

In Fig. 3a, static powder patterns are presented for asym-
metry parameters of = 0 and » = 0.5. Figure 3b shows the
corresponding high-resolution spectra containing the same
information. Experimentally, zero-field NMR spectra in high
field can be achieved only when the spinning speed w, is
large compared with the internal spin interactions (dipolar
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FIG. 3. Computer-simulated (a) powder patterns for » = 0 and n = 0.5
and (b) “zero-field” spectra obtained by applying rotation synchronized
with the pulse sequence (¢, = 84.375, 8, = 69.505, 8, = 42.864, and ¢ =
—0.0966), forn = 0 and 5 = 0.5.

or quadrupolar coupling). This will be the major obstacle
for applying the method to extract the principal values of
the quadrupolar interactions. However, the experiments
performed by Tycko (/8) have shown the potential appli-
cations of the method for studying coupled lone-pair proton
systems in which the dipolar couplings have been scaled
down by random internal motions.

AN ALTERNATIVE SEQUENCE FOR ZERO-FIELD
NMR IN HIGH FIELD

In Tycko’s trajectory, a mechanical sample rotation is
synchronized with discrete pulses to obtain an effective scalar
Hamiitonian. In this section, we describe an alternative tra-
jectory, also based on average Hamiltonian theory, in which
both the spatial and the spin parts of the Hamiltonian are
modulated by continuous rotations, but the orientation of
the axis of one of the rotations is allowed to suddenly change,
as is the phase of the spinning. In practice this feature can
be conveniently applied to the spin rotation, since it is more
difficult to mechanically change the spatial sample rotation
axis. Another characteristic of the new trajectory is that the
total average Hamiltonian is obtained over two rotation cy-
cles, which may affect the efficiency of the sample spinning
with respect to a single spin interaction. If chemical-shift
anisotropy (CSA) is present, Tycko’s trajectory also requires
two cycles in order to accommodate a refocusing = pulse.

We start with the rotating-frame spin Hamiltonian given
by Eq. [2]. Application of spatial and spin rotations to this
Hamiltonian yields
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H()y= 3 D

1

),0( Qr)ﬂfnzz)o( Qp)AZ‘ml T2,m2

m).n;

= > exp[—i(mw, + mywy)t]

my.n;
X exp[—i(mg, + maey)]

X d»(rflzo(ﬁr)dr(nzgo(ﬁp)/il,ml TZ,m;a [27]
where w, and w, are the spinning speeds of the spatial and
spin rotations, respectively, ¢, and ¢, are the initial phases
of the rotations, and 8, and (3, are the angles of the rotation
axes with respect to the external field. In order to produce a
scalar Hamiltonian, the indices of the spatial and spin tensors
must satisfy the relationship given in Eq. [1]: m, = —my =
m. The spinning speeds of the two rotations therefore must
be equal (w, = w, = wy ), and the resulting zero-order average
Hamiltonian is given by

H =3 exp[—im(¢, — ¢:)]

X dZo(B)AZ0(Bo) Az - Tom. (28]

It can be shown that for a single pair of rotations around
fixed axes it is impossible to obtain the zero-field scalar
Hamiltonian given by Eq. [1]. The next step is to consider
whether two pairs of rotations can extract the scalar operator
from the total spin Hamiltonian in high field. As in the pre-
ceding section, we choose to keep the angle of the spatial
rotation axis with respect to the external field constant and
change instead the phase and axis of the spin rotation. After
application of average Hamiltonian theory over two rotation
cycles, the problem is reduced to finding the solution of the
equation

1d3) o(B)[exp(—imp,, ) d 5 h(Bo,)

+ exp(—ime,)dSh(Bp,)] = (—1)"e,  [29]
in which we have already set ¢, = 0.

Looking for the simplest solutions of Eq. [29], we set
o, = ¢p, = 0. Equation [ 29] then reduces to the set of three
simultaneous equations

LA (B (By) + deo(Boy)] = o
LdR0(BId(By) + di0(Bp)] = —0

$dQo(Bd50(Bp,) + d30(Bp)] = 0. [30]
Equation [30] not only looks simpler than Eq. [23]. but
there are also only four unknown variables, one of which is
independent.

The dependence of the solutions of Eq. [30] (8;, 8,, )
on the free variable g, is shown in Fig. 4. Because of the
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FIG. 4. Exact solutions of 8,, 8,,, and ¢ as functions of the free variable
By, in the [0°, 180° ] period. The zero-order average Hamiltonian is a scalar
operator scaled by a factor ¢ from the untruncated internal spin Hamiltonian
for each set of 3,,, 8,,, and 3:.

symmetry properties of Eq. [30], if 8; (i = p1, p2, ), is one
of the solutions of Eq. [30], so is # — §;. For this reason,
we show angles of the solutions only in the region of 0° to
90°. As can be seen from the figure, for each value of 8,,,
there two sets of 8;, §,,, and o values for each solution in
the region of [20.603°, 90°} and four sets in the region of
[0°, 20.603°]. For magic-angle spinning of the sample, or
when both 8, and 8, are magic angles, the scaling factor is
zero.

The maximum scaling factor that can be obtained from
this trajectory is 0.084 (corresponding to 3, = 43.48°,
Bp, = 76.66°, and §,, = 0°), smaller than the value 0.117 in
Tycko’s trajectory. Nevertheless, this trajectory is derived
from a simple pulse sequence and is stable at the point with
maximum scaling factor. The most interesting solution of
this trajectory is at 8,, = 0° with maximum scaling factor.
At this point we need not apply any RF field in the first
period because the rotation around the z axis in the rotating
frame commutes with the spin Hamiltonian, and thus the
spin parts of the Hamiltonian are unaffected during the ro-
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tation. As in the case of Tycko’s trajectory, the mechanical
rotation must be synchronized with the RF fields, the am-
plitude as well as the phase. Experimentally, the axes and
rates of the spin rotation may be adjusted by changing the
offset and the amplitude of the RF field (24), as in the
rotating-frame magic-angle experiment of Lee and Gold-
burg (25).

OPTIMIZED SOLUTIONS

Three solutions are readily obtained from Eqs. [12] and
[13]. These solutions coincide with the trajectories used in
dynamic-angle spinning and double rotation (7, §) and in
dynamic-angle hopping (DAH ) (9), which are used to elim-
inate the second-order line broadenings of the central tran-
sitions in half-integer quadrupolar nuclei. The similarity
arises because the second-order line broadenings are deter-
mined by both the second- and the fourth-rank spatial tensors
of the first-order average Hamiltonian in the rotating frame.
The theory behind these trajectories is also similar ( /0, 18),
the main difference being that all the rotations applied in
the zero field in the high-field experiment are performed in
the coupled spatial-spin system. We briefly show here some
of the results.

The first set of trajectories can be obtained by directly
solving Eqgs. [9] and [12] using discrete rotations. These so-
lutions consist of a series of “hops” of the z axis in the coupled
spatial-spin space along paths given by two cones. On each
cone, the soluttons consist of five points separated by equal
increments of 72°. Ten hops are therefore needed. Experi-
mentally, these sudden changes can be implemented by
moving the quantization axes of the spin interaction in the
coupled spatial-spin space simultaneously. Although the
hops in spin space can be made quickly by applying RF
pulses, it is much more difficult to move the sample me-
chanically. Practically, sample hopping can be implemented
by storing the magnetization along the external magnetic
field (where the magnetization relaxes very slowly), changing
the orientation of the sample in the laboratory frame, and
finally bringing back the magnetization to the xy plane for
further evolution. Alternatively, the same result may be
achieved (while retaining both components of the magne-
tization ) by using synchronized « pulses (26). The solution
that minimizes the number of hops is a path defined by the
vertices of an icosahedron (Fig. 5).

In this experiment, which we term dynamic-angle hopping
in analogy to magic-angle spinning ( /9), the half-apex angle
8 is zero for the first cone and 63.43° for the second cone.
In a DAH cycle, the sample and the magnetization hop
through six vertices on the icosahedron, with the magneti-
zation evolving for a time 7/6 (where 7 is the length of a
cycle) under the spin Hamiltonian given by Eq. [6]. When
the sample and the magnetization have traced a closed path
through all six vertices of the icosahedron, the average Ham-
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FIG. 5. Dynamic-angle-hopping (DAH) trajectory: an icosahedron. The
half-apex angle of the first cone (indicated by the vertical arrow) is 8" =
0° and the half-apex angle of the second cone (shaded region) is 8§ =
63.43° with respect to the external field.

iltonian is a scalar in which the coupling constants §, of
quadrupolar or dipolar interactions are reduced by a factor
of five (¢ = $).

Instead of using discrete rotations (or hops), the z axis of
the coupled spatial-spin system may also travel continuously
on the two concentric cones. On the first cone, the spins
evolve for a time ¢,, while on the second cone, they evolve
for a time £, under the Hamiltonian in Eq. [6]. The half-
apex angles of the two cones depend on the ratio of the two
evolution times ¢,/ 1,. If the ratio is 1, the first half-apex angle
is given by 8, = 8V = 37.38° and the second half-apex angle

FIG. 6. Dynamic-angle-spinning (DDAS) trajectory: a dodecahedron. The
half-apex angle of the first cone (top shaded portion) is ‘1 = 37.38° and
the half-apex angle of the second cone (bottom shaded portion) is § 2’ =
79.19° with respect to the external field.

SUN AND PINES

FIG. 7. Double-rotation {DOR) trajectory. The first rotation axis is
tilted at 02 = 54.74°, the magic angle of the second-order Legendre poly-
nomial, with respect to the external field. The second rotation axis is at § %
= 30.56°, one of the magic angles of the fourth-order Legendre polynomial.
relative to the first rotation axis.

by 8, = 8'¥ = 79.19°. This trajectory possesses a dodeca-
hedral symmetry (see Fig. 6). Five vertices of the dodeca-
hedron are located on the cone with half-apex angle 8",
while the other five vertices of the polyhedron are located
on the cone with half-apex angle 8 "’, while the other five
vertices of the polyhedron are located on the cone with half-
apex angle 8. This trajectory corresponds to DAS (7) for
zero-field NMR in high field, and, as in DAH, it yields cou-
pling constants reduced by a factor of five (¢ = 1).

In the previous two trajectories, the discrete or continuous
rotations applied to the z axis of the coupled spatial-spin
space occur at different times. According to Eq. [13], a zero-
field spin Hamiltonian can also be achieved by rotating the
z axis of the coupled spatial-spin space around two or more
axes simultaneously A scalar Hamiltonian results when one
of the axes is tilted at 3, = § ) = 54.74° (the “‘magic” angle
of the second-order Legendre polynomial) with respect to
the static magnetic field Hy and the second axis of the ro-
tations is at 8, = 8 = 30.56° (one of the magic angles of
the fourth-order Legendre polynomial) relative to the first
axis (see Fig. 7). This trajectory corresponds to DOR (&)
for zero-field NMR in high field. The scaling factor of the

coupling constants with DOR trajectory is again ¢ = %.

CONCLUSIONS

In summary, we have provided an analytical basis for so-
lutions to Tycko’s ZFHF-NMR experiment, and we have
shown one alternative pulse sequence and a number of op-
timized solutions for maximal scaling factors.
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