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The Waugh theory of broadband decoupling in NMR for I-S spin-4 pairs is extended 
to arbitrary spin systems. It is shown that complete decoupling is achieved over a certain 
bandwidth if the irradiation scheme generates an average Hamiltonian for the I spins 
whose eigenvectors and eigenvalues are independent of resonance offset. If the observed 
S spins are only weakly coupled, it is possible to calculate the resulting spectrum directly 
from the offset dependence of the average Hamiltonian of the isolated I-spin system under 
the influence of the periodic decoupling sequence. The treatment applies to indirectly 
observed multiple-quantum transitions as well as to directly observable singlequantum 
resonance lines. 0 1987 Academic press. Inc. 

INTRODUCTION 

Broadband heteronuclear decoupling in isotropic liquids changed dramatically when 
cw and noise decoupling were replaced by sequences of phase-shifted radiofrequency 
pulses (I, 2). The improvements were based on sequences of composite pulses that 
are compensated for off-resonance effects. This approach was put on a sound theoretical 
basis by Waugh (3) who calculated the NMR spectrum of a spin S = 1 coupled to a 
spin I = 1 which is perturbed by a periodic sequence of radiofrequency pulses. The 
main result of Waugh’s theory is that the decoupling efficiency of a pulse sequence 
can be analyzed by considering its effect on the irradiated I spin without taking the S 
spin explicitly into account. If the average rotation frequency 0 of the I spin under 
the influence of the pulse cycle is calculated as a function of offset, the residual coupling 
J,,(6) at an offset 6 is given as 

where J represents the unperturbed heteronuclear coupling constant. This result is 
derived for a single I-S spin pair and an irradiation sequence which is periodic with 
the same period as the sampling interval for the S-spin signal. The search for a de- 
coupling sequence that works for spins I > j in the presence of electric quadrupole 
interactions as well as for systems of dipole-dipole coupled I spins (4) made it necessary 
to develop a more general theory of heteronuclear decoupling which can be applied 
to these spin systems. The results of Waugh’s theory are not directly applicable since 
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the effect of a pulse sequence on a spin > 1 or on a system of coupled spins cannot 
be described in terms of rotations in three-dimensional space. Further it is necessary 
to take into account the additional interactions that do not occur for individual spins 
5. While the presence of electric quadrupole or dipole-dipole interactions does not 
make it impossible to decouple, even if they exceed the strength of the decoupling 
field, it makes the decoupling performance much more susceptible to resonance offsets. 
In the case of spins Z = 1 it was shown that decoupling can be achieved in the presence 
of an electric quadrupole interaction that is considerably bigger than the decoupling 
field, if the frequency of the decoupler is set on resonance with the double-quantum 
transition (5, 6). However, the effective field strength acting on the double-quantum 
transition is scaled down by the ratio of the nominal rf field strength divided by the 
strength of the quadrupole coupling. Accordingly, the decoupling performance is more 
sensitive to resonance offset by the same ratio. Also the composite pulse decoupling 
schemes used in isotropic liquids fail in the presence of second-rank interactions. This 
is not surprising, since the composite pulse schemes were based on the compensation 
of off-resonance effects by combining appropriate rotation elements and did not include 
the effect of second-rank interactions. 

The organization of the paper is as follows: In the second section we develop the 
theory for the observation of individual spins S = $ coupled to an arbitrary system 
of I spins. The third section extends the theory to systems of weakly coupled S spins 
of arbitrary magnitude and the final section summarizes the results. 

SINGLE SPIN S = f , COUPLED TO AN ARBITRARY SYSTEM OF I SPINS 

Throughout this paper we will denote the spin species that is observed as the S spins 
and the species that is irradiated as the I spins and assume that Z # S. The Hamiltonian 
of the spin system can be written in the form 

‘q t) = 2-s + x, + x,s + R-1, + ZIrf( t). PI 

2s and &?i represent single-spin interactions with the magnetic field or the electric 
field gradient tensor. %ts and 2ir contain spin-spin coupling terms and 2?‘t,.&) the 
interaction of the I spins with the radiofrequency field. In high-magnetic field the 
heteronuclear coupling term can be truncated to 

where djs represents the heteronuclear coupling constant. Since 2Ys commutes with 
the rest of the Hamiltonian, it may be eliminated by transforming into an appropriate 
rotating frame. The matrix representation of the total Hamiltonian, written in the 
product base, is block diagonal. Each of the two blocks X$2 and 2’L1,2, labeled by 
the corresponding eigenvalues of S,, ms = 1 and ms = -1, represent pure I-spin 
Hamiltonians which may be written as 

z&(t) = 2, f l/2 2 dj”Z,, + 211 + ~I&. 
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Thus, the I spins represented by this Hamiltonian are shifted from the resonance 
of the isolated I-spin system by an amount ms@. Since only the S spins are observed, 
we can assume that the observable D commutes with all I-spin operators 

P, 4x1 = 0, [51 
where (Y runs over all degrees of freedom of the I spins. Furthermore we assume that 
the sampling interval of the signal is equal to the cycle time of the decoupling sequence 
TV. With the help of the commutation relation [5] we can write the observed signal as 

(D)(T,@ + 1)) = Tr{dTdn + 1 >P> 

where 

and 

Z;=(t) = Te(-~S’c~,+~,;,+%,(r’))dl’)Zj=Te(iSo’(~,+~~+~~r’))dI’). PI 0 

Complete decoupling requires therefore that 

s 

TC 
zj”g t)dt = 0, [91 

0 

wherej runs over the indices of all I spins with a nonvanishing heteronuclear coupling 
constant. This means that a decoupling sequence must generate a propagator which 
is independent of the offsets of those I spins that are coupled to the S spins. This is 
entirely analogous to the Waugh decoupling criterion and is based purely on the effect 
of the pulse sequence on the isolated I-spin system. The residual splittings of the S- 
spin transition can actually be calculated if the average Hamiltonian for the I-spin 
system under the influence of the decoupling sequence is known as a function of the 
offsets of all I spins. This average Hamiltonian is defined as 

e 

A?’ therefore represents the exact average Hamiltonian of the I-spin system and 
does not refer to an approximation like the Magnus expansion. Its dependence on the 
offsets of the I spins can be written as 

e-w1 ,.... 6 I,... jr’.= ire --I 
f” 

o (~,+&I,,+~~ .+6J,z+. “+rM,,+iY,Al)wl. [Ill 

We also introduce the shorthand notation 

A, = (msd:s,. . . , rnsd,!‘, . . .) [121 
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for the Nr-dimensional vector A, containing the additional offsets of the I spins caused 
by the heteronuclear coupling. Correspondingly, every eigenvalue Ef and eigenvector 
# of G%?” will be regarded as a Nr-dimensional function of the offsets dj. Because of 
the block diagonal form of the total Hamiltonian, the S-spin spectrum consists of all . . 
possible transitions +$\kf(AiJ + \ks1,2\k$(A-i,z), where \ks and \k’ denote the ei- 
genstates of the isolated S- and I-spin systems. The frequencies are given by 

.A = E%A-w) - E:(A,,d 1131 

and the relative intensities by 

4, = (\kf(A,,,)l‘kL(A-,,2)), 1141 

where ( 1 ) indicates the scalar product. The resulting S-spin spectrum consists therefore 
in general of (21 + 1)2N1 transitions which may be labeled with the corresponding 
states of the I-spin systems !Pf --f \kz. Figure 1 shows the resulting multiplet structure 
for a spin S = f, coupled to a spin Z = 1 which is subject to an MLEV-16 decoupling 
sequence. The three intense lines near the center of the spectrum correspond to 
!Pf + \ki transitions. Their frequency is therefore determined by the difference between 
the values of the single energy level Ef(A,), evaluated at the offsets AlI2 and A-1,2, The 
size of the residual couplings of these “parent lines” is therefore determined by the 
variation of the eigenvalues of the average I-spin Hamiltonian as a function of offset, 
and not by their absolute value. The less intense “satellites” are due to transitions 
\kf + \k’, with t f u. Their frequencies are therefore determined by the total magnitude 
of the average Hamiltonian and their intensity by the variation of its eigenvectors as 
a function of offset. The satellites correspond to simultaneous transitions of the I- and 
S-spin system and their intensity is a measure of the mixing that occurs between the 
eigenstates of the I-spin average Hamiltonian when the offset is changed from A,,, 
to A-,/z. 

In the ideal case of an offset-independent average Hamiltonian the “parent lines” 
collapse into a single resonance and the intensity of the satellites vanishes. A full 
account of the decoupling performance of a pulse sequence therefore contains the 

FIG. 1. Residual splittings and “satellites” in the spectrum of a spin S = $ coupled to a spin I = 1. The I 
spin is coupled to the electric field gradient and irradiated with an MLEV-16 sequence. The intense lines 
near the center of the spectrum correspond to transitions that leave the state of the I-spin system invariant, 
while the less intense satellites can be interpreted as combination lines. 
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offset dependence of the eigenvalues and eigenvectors of the I-spin average Hamil- 
tonian. In practice, however, the loss of resolution and sensitivity associated with the 
residual splittings of the “parent lines” is usually considered more important than the 
intensity of the satellites. Pulse sequences that have a good decoupling performance 
and therefore generate eigenvalues with only small dependence on the offsets generally 
also generate eigenvectors that are relatively robust, leading to low intensity of the 
“satellites.” Often the \kf + \kf transitions of the central multiplet are therefore the 
only ones that need to be taken into account. The remaining multiplet contains then 
(21 + l)N’ resonance lines corresponding directly to the (21 + l)N1 eigenvalues of 
2’. The measure for the decoupling performance of a pulse sequence over a certain 
bandwidth is then simply the difference between the minimum and maximum of each 
eigenvalue. These differences are equal to the biggest possible residual couplings in 
the S-spin spectrum, if the satellites can be neglected. 

Figure 2 shows the bandwidth and maximum residual shifts for a one-dimensional 
cross section along 6: = 6: through the two-dimensional energy surfaces of a system 
of two spins Z = f under the influence of a decoupling sequence. This figure also 
demonstrates that good decoupling performance does not automatically imply a small 
average Hamiltonian, but one that does not depend on offset. A nonvanishing offset 
independent average Hamiltonian that does not commute with the offset term may 
actually lead to an overall behavior that is less susceptible toward resonance offset 
since it partly quenches the offset term. As a consequence, the standard methods of 
generating improved pulse sequences by combining appropriate subcycles may fail in 
this case. While the procedure does reduce the size of the average Hamiltonian, it 
may make it at the same time more susceptible to resonance offset. The situation is 
shown schematically in Fig. 3. 

Biggest 
Possible 
Residual 
Splitting 

I -i,- Bandwidth 

FIG. 2. Energy levels of the average Hamiltonian of a system of two equivalent spins I = f, subject to a 
COMARO-2 decoupling sequence (4), as a function of offset. The useful bandwidth of the sequence is given 
by the interval over which the energy levels are roughly independent of offset. The differences between the 
minimum and maximum of each level determines the largest possible residual splitting in the S spectrum. 
The straight line corresponds to the singlet state which is not affected by the offset. 
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FIG. 3. Combination of subcycles to reduce error terms may actually decrease decoupling performance. 
(a) In the subcycles the offset term in the average Hamiltonian may be partly quenched by the orthogonal 
terms. (b) In the combined cycle, the orthogonal part has been greatly reduced and the offset term has 
become first order. 

The cross section 6: = * 0 * = Sj’ =. * . = 6’ through the energy surfaces (see Fig. 2) 
contains all the necessary information to calculate decoupling performance and the 
residual couplings in the S spectrum if the I spins are equivalent, i.e., d:S = dsS = . . . 
= d”. The resulting S spectrum for a certain coupling constant d” can be calculated 
as a function of decoupler offset 6 by expanding the energy 
series around 6 

Ei(6’) = Ef(6) + C (6’ - 6)ti, 

where 
t, = +w’) 
1 ii (as')' 6=6,’ 

levels Ef(6’) in a Taylor 

[I51 

[I61 

The shift of the corresponding S-spin resonance is given by 

,=E,(,.~)-E,(,-~)=2[~l,+(~)p,,+(~~,,+. . .] [17] 

For small enough coupling constants d” the higher-order terms in this expansion 
can be neglected and the first derivative of the energy levels therefore represent scaling 
factors for the residual couplings in the S spectrum. Figure 4 shows an example for a 
spin system I = 1, S = f . 

It is straightforward to recover the case I = f , S = f treated by Waugh. The eigen- 
values of the average Hamiltonian determine the average rotation frequency 0, whose 
dependence on resonance offset, not whose total magnitude, causes the residual cou- 
pling in the S spectrum. The eigenvectors of the average Hamiltonian define the overall 
rotation axis which is assumed to be independent of offset in Waugh’s treatment, 
thereby leading to vanishing intensity of the satellites. 
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FIG. 4. For equivalent I spins, the derivative of the energy levels with respect to the offset represent scaling 
coefficients for the heteronuclear coupling constants if they are small. Here, the derivatives have been calculated 
for a spin I = 1, subject to a COMARO-2 sequence (4). The scaling coefficients are compared with spectra 
calculated for an IS system with I = 1, S = f for three different decoupler frequency offsets. 

SYSTEMS OF WEAKLY COUPLED S SPINS 

If the observed spin system is more complex, the Hamiltonian of Eq. [2] must be 
expanded to include the additional interactions such as nuclear quadrupole interactions 
of the S spins and spin-spin couplings among them. However, in the high-field weak- 
coupling limit, these additional interactions all commute with the heteronuclear cou- 
pling and can therefore be taken into account separately. The resulting S spectrum 
may therefore be calculated in two steps: first the problem of the isolated S-spin system 
is solved and then each transition is coupled to the I-spin system separately. The 
Hamiltonian of the isolated S-spin system is still diagonal in the product base and 
accordingly each eigenstate @ can be labeled by the corresponding eigenvalues of the 
operators Sk=, mz,. If the average Hamiltonian of the isolated I-spin system is coupled 
to state \ks, the heteronuclear couplings generate a shift in the resonances of the I 
spins. The Nr-dimensional vectors containing the resonance shifts may be written as 

Ar = (c mz,.&, . . . ,c mz,d$, . . .). [I81 
k k 

A transition \I/: + q/9 of the isolated S-spin system is split into (21+ 1)2N’ transitions 
in the presence of the I spins. The transition \ks!P: -+ @IF: of the combined system 
is shifted from the position of the uncoupled resonance by 

[I91 
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and has the relative intensity 
L, = W’f@#‘t@J). WI 

The average value of the magnetic quantum numbers of the S spins, 1/2(m& 
+ mz,) generates shifts of the I-spin resonances which can be included in a modified 
&“I 

Pll 

leaving a modified heteronuclear coupling which depends only on the difference 

WI 

with 

v31 

and Sy represents a pseudo-spin 4. The modification of R’i generates a shift in the 
resonance positions of the I spins and correspondingly increases the broadband re- 
quirements for the decoupling sequence. Since the different S-spin transitions generate 
different offsets of the I spins, the resulting residual couplings are different for each 
transition in the S-spin spectrum. The resulting S-spin spectrum can be calculated 
according to the treatment put forward in the second section for a single spin S = 1 
by considering each transition of the isolated S-spin system separately as a pseudo- 
spin 5, using the modified X’f” and &“g. 

SUMMARY AND CONCLUSIONS 

The theory of modulated heteronuclear decoupling can be generalized to arbitrary 
systems of I spins and weakly coupled S spins. A periodic irradiation scheme, applied 
to the I-spin system decouples them from another spin species S if it generates an 
average Hamiltonian g1 that does not depend on the offsets of the various coupled I 
spins. It is not necessary that the average Hamiltonian be small. Offset dependence of 
the eigenvalues of 2’ leads to residual splittings in the S-spin spectrum while offset 
dependence of the eigenvectors leads to “satellites.” The resulting spectrum of a weakly 
coupled system of S spins, coupled to an arbitrary system of I spins under the influence 
of a periodic decoupling sequence can be calculated in a two-step procedure where 
first the problem of the isolated S-spin system is solved and then every transition is 
coupled to the I-spin system. Each transition can be treated as a single spin 1 if the 
offsets of the I spins are modified appropriately. In the linear regime, the first derivative 
of the energy levels as a function of offset corresponds to a scaling factor for the 
coupling constant. Derivative plots of the energy levels therefore are a useful tool for 
the analysis of decoupling performance as a function of offset. For larger couplings, 
outside the linear regime, higher derivatives must be taken into account. A complication 
which has not been taken into account is presented by strong coupling between the S 
spins. In this case the Hamiltonian for the isolated S-spin system does not commute 
with the heteronuclear coupling and the two-step procedure for the calculation of the 
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S-spin spectrum is no longer possible. The Skr operators are no longer constants of 
the motion and accordingly the virtual offsets of the I spins, generated by the heteronu- 
clear coupling, become time dependent, thereby interfering with the compensation 
scheme of the composite pulse sequence. An exact calculation of residual splittings in 
this case requires that the S-spin system be taken fully into account. However, pulse 
sequences that perform well for weakly coupled S-spin systems also yield good results 
in the strongly coupled case. 
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