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Coherent averaging with time-dependent magnetic fields at low and zero static magnetic 
fields encounters several features which are unfamiliar in high-field magnetic resonance. 
The principal differences are that magnetic field pulses act generally on all spin species in 
the sample and that the Hamiltonian contains additional terms that are normally discatded 
in a high static magnetic field. We illustrate how the full Hamiltonian or different terms 
of the Hamiltonian may be averaged to zero by sequences of 90” rotations around the x, 
y, and z axes. The two limiting cases of ideal delta-function pulses and windowless sequences 
are treated. We also show that the duality between rotations of space coordinates and spin 
coordinates allows one to replace spatial reorientations of the sample, such as magic-angle 
spinning, by time-dependent magnetic fields. Sequences of delta-function pubes at zero 
field are analogous to recursive expansion schemes of multiple-pulse sequences at high 
field. The terms of the full Hamiltonian appear also in the average Hamiltonian of high- 
field pulse sequences and can be manipulated by the same sequence of configurations as 
in zero-field multiple-pulse NMR. o 1987 Academic PIXW, IIIC. 

INTRODUCTION 

The principal sources of broadening of the resonance lines in solid-state NMR are 
strong dipolar interactions and, in disordered systems such as powders and amorphous 
solids, the superposition of different orientations, leading to inhomogeneously broad- 
ened resonance lines. The traditional approaches to overcome these broadening mech- 
anisms and obtain high-resolution spectra in solids have been the use of multiple- 
pulse sequences to create effective average Hamiltonians by manipulating the spin 
operators (I) and rapid spinning (Z-4) or hopping (5) of the sample around an axis 
tilted from the direction of the magnetic field by the “magic angle,” 8, = 54.7’ to 
average out those interactions that transform under spatial rotations like irreducible 
tensors of rank two, such as chemical shielding anisotropy. An alternative approach 
for the elimination of inhomogeneous broadening in dipolar- or quadrupolar-coupled 
spin systems is zero-field magnetic resonance (6-11). In the absence of a magnetic 
field all the spins experience the same interactions, independent of the orientation of 
the crystallite. Most forms of inhomogeneous line broadening therefore vanish in zero 
field while spin-spin couplings and quadrupolar interactions remain. The Hamiltonian 
of the spin system does not depend on the orientation of the individual crystallite and 
space becomes essentially isotropic from the point of view of magnetic resonance. 

In this paper we discuss the possibilities of manipulating the spin degrees of freedom 
by applying sequences of magnetic field pulses in low or zero static magnetic fields. 
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Possible goals are homonuclear and heteronuclear spin decoupling by multiple-pulse 
sequences and the use of composite pulses either to create homogeneous excitation 
of the spin system or to excite selectively only one spin species (12). While the internal 
Hamiltonian of a spin system at zero field is independent of the orientation of the 
crystallite or molecule, the direction of the time-dependent magnetic field breaks this 
full rotational symmetry. An arbitrary pulse sequence has therefore an effect on the 
spin system that depends on the relative orientation of the molecule and the magnetic 
field. The resulting spectrum will therefore display a powder pattern. This can be 
avoided by designing multiple-pulse sequences that generate an “isotropic” average 
Hamiltonian. 

Because the total Hamiltonian is invariant under simultaneous rotations of the 
space and spin coordinates, it is always possible, at least in principle, to replace an 
experiment that includes sample reorientation, such as magic-angle spinning or hop- 
ping, by an equivalent experiment that leaves the orientation of the sample invariant 
but imposes an appropriate time dependence on the magnetic field. It is therefore 
possible to design experiments that average out interactions transforming as second- 
rank tensors under rotations of space coordinates without actually moving the sample. 
Three experiments will be discussed which are equivalent to magic-angle spinning in 
the high-field and low-field limits. 

Multiple-pulse sequences designed for use at high magnetic fields cannot be used 
at low static fields since they take into account only the high-field, truncated, part of 
the Hamiltonian, including only interactions that are invariant under rotations around 
the magnetic field. It is therefore necessary to develop new pulse sequences that take 
into account the full, untruncated zero-field Hamiltonian. From the transformation 
properties under rotations of the spin coordinates of the additional terms we expect, 
as an additional benefit, some insight into the understanding of some high-field mul- 
tiple-pulse experiments where the same terms appear as imperfections of the pulse 
sequence (13, 14). While multiple-pulse sequences at high magnetic fields use only 
rotations around the x and y axes of the rotating frame, zero-field magnetic resonance 
allows equally rotations around the z axis. In the iterative design of multiple-pulse 
sequences, the analogous operation is achieved by shifting the phase of the radiofre- 
quency pulses, thereby rotating the average Hamiltonian around the z axis. 

SPIN HAMILTONIANS 

We consider a system of spins I at zero field or in a magnetic field that is too weak 
to effectively truncate dipole-dipole and quadrupolar interactions. The Hamiltonian 
of such a system contains the following terms: 

Zl= 2 - rjIj( 1 - aj)Bo 

Z2 = 2 C IjDjkIk + 2 IjQjIj 
j k J 

[II 
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where vectors are written as V and tensors as T, y represents the gyromagnetic ratio, 
I the angular momentum operator, u the chemical-shift tensor, & “static” magnetic 
fields, D the spin-spin coupling tensor, Q the interaction of the nuclear quadrupole 
moment with the electric field gradient tensor, and B&) the pulsed magnetic field. 
x1 contains interactions linear in the spin operators and G??~ terms bilinear in the spin 
operators, transforming like irreducible tensors of rank two if all the spin operators 
involved are rotated synchronously. The effect of the pulses, represented by z”p(t), is 
evaluated without taking the chemical shift into account, thus assuming that all the 
spins with the same gyromagnetic ratio are rotated through the same angle. We dis- 
tinguish between the pulsed field BP and the field BO which is considered to be static 
or slowly varying on the time scale of the multiple-pulse sequence. 

The coordinate system used is the laboratory-fixed frame of reference. We expand 
the linear part of the Hamiltonian in the basis of the single-spin operators and use the 
notation X = Ijx, Y = Ijy, and Z = Zjz and the bilinear terms in the basis XX = ZjxIk 
- (1/3)Ij’ Ik, YY e ZjYr, - (1/3)Ij* Ik, ZZ E Ijzr, - (1/3)Ij’ Ik, XY S IjxIky + ZjjJ&, 
XZ = ZjxZkz + ZjzZb, and YZ = Ziyr, + ZjzIky . The Hamiltonian can therefore be brought 
into the form 

~i,,=~,+~*=CCaj=(y+CCCCbj~~cyB, a,p=x, Y, z. PI 
i 0~ .ikaS 

The coefficients aj, and bjka@ are functions of the orientation of the crystallite. In 
general the three linear terms are independent of each other, while the quadratic terms 
are related by 

C bjtcau = 0, [31 
L1I 

leaving five independent bilinear terms, determined by the number of elements of an 
irreducible tensor of rank two. 

Efict ofpulses. Multiple-pulse NMR uses magnetic field pulses to make the Ham- 
iltonian of the system appear time dependent, thereby averaging it to the desired form 
(I). The rotations of the spins induced by the magnetic field pulses alone are usually 
not of interest and the system is therefore observed at times td when the overall rotation 
vanishes. The propagator generated by the pulses alone is 

u,,(td) = y-e-ij:Zdt’)dt’ = 1, 

where T represents the Dyson time-ordering operator. It is therefore convenient to 
separate the effect of the pulses on the system from the evolution caused by the internal 
Hamiltonian and write the time dependence of the density operator as 

AtI = u,(t)~*Xt)p(0)~~~,(t)U~t), [51 

so that the density operator at detection is determined by 

P(td) = ~ilint(td)P(o)~~~~(td), Fl 
where the propagator of the interaction representation is given by 

171 
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and 
ginXO = uktWintWt)- VI 

The internal Hamiltonian therefore appears time dependent under the influence of 
the magnetic field pulses. We will consider the operators as time dependent and the 
coefficients a and b as static: 

*inAt) = C CajAO + C C C C ~j/&~t)l%t) r91 
i a jk a6 

with 
G(t) = U~t)aUp(t), etc. [la 

As long as only 90” rotations around the coordinate axes are considered, each 
operator is converted into another operator of the same set, e.g., X into Z, YY into 
XX, and YZ into XY. We will calculate only the lowest order term of the average 
Hamiltonian (I), 

where tc represents the cycle time of the pulse sequence. 
A complication for zero-field multiple-pulse NMR is introduced by different +rj 

values of different spin species. At high field, the different resonance frequencies of 
the various types of spins allow one to excite only one spin species and therefore rotate 
all affected spins through the same angle. At zero field, a magnetic field puise of 
strength BP and duration tp generally affects all the spins in the sample, turning difI&nt 
spin species through different angles 4j: 

cpi= -YjBpfp- iI21 
This dependence of the rotation angle on the gyromagnetic ratio of the spin species 

may be a useful tool for the creation of pulse sequences that act differently on di&rent 
spin species (8). 

AVERAGING IN HIGH AND ZERO FIELD 

In high magnetic fields it is necessary to take into account only those terms that 
are invariant with respect to rotation around the z axis, i.e., the Z and ZZ terms, 
while all other terms are averaged out by the fast precession of the spins around the 
large magnetic field. The two remaining terms are made time dependent by the ap- 
plication of multiple-pulse sequences. The Car-r-Purcell sequence for example is de- 
signed to take only the 2 term, i.e., chemical shifts and inhomogeneous magnetic 
fields, into account. By a series of ?r pulses, the Z term is periodically inverted in the 
interaction representation Z, Z, Z, Z, . . . , and thereby averaged to zero. In the case 
of the WHH-4 sequence, both the Z and the ZZ terms are the objectives of averaging. 
Their interaction frame values are successively turned along the x, y, and z direction. 
The ZZ term is therefore averaged to zero while the chemical-shift term Z becomes 
(1/3)(X+ Y + Z). 

The toggling-frame transformation of the various terms of the spin Hamiltonian 
193 can always be represented as a rotation in three-dimensional space, i.e., by an 
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element of the three-dimensional rotation group SO(3). We will concentrate here on 
the case where magnetic field pulses generate rotations by 90” around the coordinate 
axes. Between the pulses, the transformations [lo] are then elements of the cubic 
rotation group 0. The 24 elements of this group generate all possible orientations of 
a right-handed coordinate system with the axes parallel to one of the original axes as 
shown in Table 1. We use the shorthand notation (a&) to denote a configuration 
with 2 = CI, p = /I, and 2 = y. The principal difference between high-field and zero- 
field multiple-pulse NMR is that at high field only the value of 2 has to be considered 
while in zero field the full configuration of 2, F, and 2 needs to be accounted for. 

TABLE 1 

4a and 4J, in the 24 Possible Configurations of Right-Handed Coordinate Systems 

X 

X 
X 
z 
Z 
Y 
P 

X 
R 
d 

Y 
Z 
P 
z 
F 
Z 
Y 
z 

R 
z 
P 

Z 
Y 

R 

Y 

Z 
z 
Y 
Y 

R 
X 

F 
Y 
F 

Z 
X 
Z 
a 
2 
R 
z 
X 

z 
P 

a 
F 

X 
Z 

Z 

P 
Y 

X 
B 
Z 
Z 

z 
z 
Z 

X 
Y 

a 
Y 

X 
F 

d 
P 

P 
R 
z 
X 
z 
Y 

0 X 90” rotation (E) 

xx YY zz 

1 X 90” rotation (6CJ 

xx zz YY 
xx zz YY 
zz YY xx 
zz YY xx 
YY xx zz 
YY xx zz 

2 x 90” = 1 x 180” (3C,) 

xx YY zz 
xx YY zz 
xx YY zz 

2 x 90” = 1 x 120” (8C3 

YY zz xx 
zz xx YY 
YY zz xx 
zz xx YY 
YY zz xx 
zz xx YY 
YY zz xx 
zz xx YY 

3 X 90” = 180” (6C;) 

xx zz YY 
zz YY xx 
YY xx zz 

zz YY xx 
YY xx zz 
xx zz YY 

xx 

xz 
-xz 
-YZ 

YZ 
-XY 
-XY 

-XY 
-XY 

XY 

YZ 
xz 

-YZ 
xz 
YZ 

-xz 
-YZ 
-xz 

xz 
YZ 

XY 
-YZ 

XY 
-xz 

xz 

-XY 
XY 

-xz 
-xz 

YZ 
-YZ 

-xz 
xz 

-xz 

XY 
YZ 
XY 

-YZ 
-XY 
-YZ 
-XY 

YZ 

XY 
xz 
YZ 

xz 
-YZ 
-XY 

YZ 

-YZ 
-YZ 

XY 
-XY 
-xz 

xz 

YZ 
-YZ 
-YZ 

xz 
XY 

-xz 
-XY 
-xz 

XY 
xz 

-XY 

YZ 
XY 
xz 

-XY 
-xz 

YZ 
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The visualization of the rotations that occur during the multiple-pulse experiment 
can be facilitated by introducing a vector representation for the different terms of the 
Hamiltonian. The nine basis operators are represented by unit vectors or points on 
the unit sphere which are rotated by the pulses. Figure 1 shows the nine basis vectors, 
together with the trajectories they describe under rotations around the coordinate axes. 
The linear terms correspond exactly to the appropriate unit vectors while XX, YY, 
and ZZ can be thought of as the same vectors, but points on opposite sides of the 
sphere are equivalent. The cross terms XY, XZ, and YZ correspond to points halfway 
between the coordinate axes. Points lying on opposite sides of the sphere are again 
equivalent. 

The trajectories of the linear and quadratic terms correspond to great circles with 
their axes along the coordinate axes. The cross terms also move along great circles if 
both components are changed during a transition, i.e., if the rotation axis is orthogonal 

(a) 

W 

FIG. 1. Vector representation of the basis operators X, Y, and 2 (a) and XX, YY, 22, XY, X2, and YZ 
(b). The circles indicate how the vectors move under rotations around the coordinate axes. 
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to the direction of the operator. However, if only one component changes, the trajectory 
follows a circle that intersects the great circles at right angles at the midpoints between 
coordinate axes. 

ZERO-FIELD PULSE SEQUENCES 

Sequences of delta-function pulses. If the rotations occur instantaneously, the average 
Hamiltonian is determined by the toggling-frame Hamiltonians between the pulses. 
The toggling-frame values of the nine basis operators in the 24 possible configurations 
are given in Table 1. The zero-order average Hamiltonian of a sequence of delta- 
function pulses can be calculated by averaging over the configurations that are reached 
during the pulse sequence. The usual purpose of a multiple-pulse sequence is to average 
one or several terms of the Hamiltonian to zero. 

The linear terms in the Hamiltonian contain the interaction of the spin with the 
magnetic fields while spin-spin interactions are bilinear. However, if a pulse sequence 
acts only on one spin species, the heteronuclear couplings to unatIected spins transform 
like vectors. A sequence that acts only on one spin species I and eliminates the terms 
that are linear in I from the Hamiltonian while leaving species S unaffected, decouples 
the I from the S spins. In the high-field case there is only one linear term which can 
easily be eliminated by a sequence of only two configurations, e.g., (XYZ) and (XYZ), 
as in the Carr-Purcell sequence. In the average Hamiltonian of this sequence the Y 
and Z terms vanish while the X term remains. In zero field, the elimination of only 
two linear terms would create an anisotropic average Hamiltonian. In general, one 
needs therefore to eliminate all three linear terms simultaneously. This is not possible --- 
in two steps, since the inverse of (XYZ), (XYZ), corresponds to a left-handed coordinate 
system. A minimum of four configurations is therefore necessary, e.g., (XYZ), (XYZ), 
(J?YZ), and (XYZ). This sequence of configurations can be traversed by 7r rotations 
around the x, y, x and y axes of the toggling frame. Since only ?r rotations are involved, 
these directions coincide with the laboratory-frame directions. The pulse sequence 

(-a,-7ry-7rx-7ry-)n [I31 

with equal delays between the pulses is the zero-field analog of the Carr-Purcell se- 
quence. Note however that it is not possible to generate an echo with this sequence if 
the cycle time is long compared to the inverse of the size of 3int, since the toggling- 
frame Hamiltonian does not commute with itself at different times. A laboratory- 
frame Hamiltonian of a,l, + a,,Zy + azZz is converted into a,l, - a,,Z,, - a,l, by the 
first ?r rotation which does not commute with the initial value if a,, a,,, and a, are 
independent of each other. 

One of the simplest sequences to eliminate the high-field bilinear term ZZ is the 
WHH4 sequence. Depending on how the sequence is implemented, it can be viewed 
as averaging over the configurations (XYZ), (XZY), and (ZYX). A sequence that 
eliminates second-rank interactions at zero field has to eliminate all six bilinear terms 
simultaneously in order to create an isotropic average Hamiltonian. However, since 
the transformation properties of the quadratic terms Xx, YY, and ZZ differ from 
those of the cross terms XY, XZ, and YZ, they must be eliminated via different pro- 
cedures. The quadratic terms Xx, YY, and ZZ cannot be inverted but must be averaged 
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to zero via their isotropic average XX + YY + ZZ = 0. This requires a minimum of 
three configurations such as (XYZ), (YZX), and (ZXY), which can be reached by 
120” rotations around the cube body axes or by pairs of 90” rotations around the 
coordinate axes. Such a sequence eliminates all three quadratic terms simultaneously, 
in the same number of steps that are required for the single high-field term ZZ. In 
general, any sequence that averages the quadratic terms to zero must average over a 
multiple of three configurations. 

The cross terms, on the other hand, are eliminated by combining them with their 
inverse. Since the number of negative cross terms in any given con!+ration is even, 
a multiple of four conf&urations such as (XYZ), (XZY),, (XYZ), and (XZY) is nm 
to eliminate all three cross terms. For the simultaneous elimination of all six bilinear 
terms it is therefore necessary to use a multiple of 12 configurations. A possible example 
is the above sequence of four configurations together with their cyclic permutations. 
The resultant pulse sequence, which can be considered to be the zero-field analog of 
WHH-4, can be written as 

(-x-x-x-z-y-y-y-%-2-2-z-y-),, [I4 

where each letter implies a 90” pulse along the corresponding coordinate axis and 
equal delays are implied between the pulses. While this sequence contains pulses along 
all three coordinate axes, it is also possible to achieve the same objective with pulses 
only along two coordinate axes. The sequence 

(-x-y-x-J.-)~, [lS] 

eliminates all bilinear terms and includes only pulses along the x and y axes. Delta- 
pulse sequences that eliminate different terms of the Hamiltonian are summarized in 
Table 2. 

windowless sequences. Since zero-field magnetic resonance is usually performed 
via indirect detection at high field, it is ideally suited for windowless pulse sequences 
(15) thereby allowing one to reach short cycle times without excessive power require- 
ments. In this case we cannot consider the value of the interaction-frame Hamiltonian 

TABLE 2 

Summary of &Pulse Sequences for Averaging in Zero Field 

Term(s) to 
be eliminated 

No. of 
configurations Example of configurations 

Z 
x Y, z 
zz 
xx, YY, zz 
XY 
XY, xz, YZ 
All a6 

All Q, a0 12 

(XYZ), (XIT) 
(XYZ), (XEZ), (XFZ,, (XYZ, 
(XYZ), (XZP), (ZYX) 
WY.% (Yzn em 
(XYZ), (YXZ) 
(XYZ), (XZP), (X%2), (X2-Y) 
(XYZ), (XZP), (XET), (XZY, 

+ cyclic permutations 
(XYZ), (xFz,, (XY.z,, (XFZ, 

+ cyclic permutations 
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only between the 90” pulses, but must follow it through the actual rotations. If a linear 
term is rotated from LY to CY’ during a 90” pulse, its average value is (2/7r)((~ + a’). If it 
stays invariant because it coincides with the rotation axis, its average value is CL Since 
the two values are incommensurate, it is necessary to consider “stationary points” (Y 
= LY’ separately from the “transitions” with (Y P (Y’. A linear term averages to zero if 
every stationary point at a is balanced by one at -a and the number of times LY appears 
in a transition is equal to the number of times -(Y appears. The smallest number of 
90” rotations needed to eliminate a single term is four, corresponding to a rotation 
by 360” along a great circle. It is, however, not necessary for the sequence to contain 
a multiple of four 90” rotations. The five 90” rotations 2 + X --, Y + R + Y + Z, 
for example, create a zero-order average Hamiltonian with vanishing 2 term. If all 
three linear terms are to be eliminated, stationary points are unavoidable. A minimum 
of sixteen 90” rotations or eight 180” rotations are required to fulfill the above con- 
ditions simultaneously for all three terms. A possible pulse sequence is 

---- __-- 
XXYY XXYY XXYY XXYY. [I61 

The resulting trajectories of the relevant terms are represented in Fig. 2 and the cor- 
responding sequence of configurations is given in Table 3. 

For the square terms WY, a transition (Y(Y --f &I contributes 1/2(aa! + BP) + l/+3 
to the average Hamiltonian if CY # @ and (Y(Y if (Y = ,f3. The rules to eliminate the high- 
field bilinear term ZZ (IS) can be expressed in terms of their trajectories on the unit 
sphere as follows: 

(i) Any trajectory must pass through the points X = f 1, Y = f 1, or Z = f 1 an 
equal number of times. Stationary points count as two passages. 

(ii) Each 90” segment of a great circle must be balanced by an adjacent segment 
of the same circle. 

According to the second rule, the trajectories can always be built up of 180” segments 
of great circles. Since opposite sides of the unit sphere are equivalent for bilinear terms, 
180” segments of great circles play the same role for the bilinear terms as full circles 
do for linear terms. At least three such segments, one of which may be replaced by 

FIG. 2. Trajectories of the three linear terms under the 16-pulse sequence that eliminates them simulta- 
neously. Small circles indicate stationary points. 
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TABLE 3 

Summary of Windowless Sequences for Averaging in Zero Field 

Term(s) to 
be eliminated 

No. of 
90” rotations Example 

z 4 

x K z 16 

zz 6 

xx, YY, zz 6 

XY 2 

XY, xz, YZ 4 

All ~yj3 24 

(XYZ) -+ (ZYX) + (XYZ) * (ZYX) + (XYZ) 
--- 

(XYZ) + (XZP) + (XEZ) + (ZFX) + (XFZ) + (XZY) + 
(XYZ, --t (ZYX) + (XYZ) --* (XZY) + (Xl-q -, --- 
(ZYX) + (XFZ) + (XZY, --* (XYi;) + (ZYX) -* (XYZ) 

BLEW-6, e.g., (XYZ) -, (XZF) -+ (YZX) + (YXZ) + --- 
(Yzx) -* (XZY) + (XY.2) 

(XYZ) + (XZP) + (Yzx) + (ZFX) -) (ZXY) + (FXZ) + 
w-n 

(XYZ) + (YXZ) + (XYZ) 

(XYZ) + (XZP) -, (XF.2) + (XYZ) 
- - 

(XYZ) + (XZP) + (Yzx) -, (FXZ) + (ZXY) * (ZYX) + 
(ZYZ) + (XZY) + (Yzx) + (YXZ) + (ZXP) + 
(ZYX) -+ (XYZ) + (XZY) --, (YZ) + (YXZ) -w 
(ZXY) + (ZFX) + (XE) + (XZF) --t (YZX) --t 
(YXZ) + (zn) + (ZYX) + (XYZ) 

two stationary points, are required to eliminate ZZ. Apart from rotations around the 
z axis there is only one possible way to arrange three semicircles without violating 
rule (i). The resulting trajectory, corresponding to a BLEW-6 sequence, is shown in 
Fig. 3. These rules can equally be applied for the elimination of the terms XX and 

FIG. 3. Trajectory of ZZ under a BLEW-6 sequence. 
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YY. With the same number of six 90” rotations it is possible to average all three terms 
to zero, e.g., with the pulse sequence 

cw )2n * P71 

Figure 4 shows the resulting trajectory which is the same for all three terms. Note 
that the trajectory includes two stationary points (small circles). 

The cross terms again behave differently. We must distinguish “semistationary tran- 
sitions” such as aB + @‘which contribute 2/7r(a/3 + a@‘) to the average Hamiltonian 
from inverting transitions &I + CY’~ = +a which add +I/~((Y(Y - #I). In terms of 
trajectories on the unit sphere, inverting transitions correspond to segments of great 
circles and must be balanced by adjacent segments of the same great circle for the 
corresponding term to vanish. Thus again 180” segments of great circles in the tra- 
jectories of the cross terms are analogous to full circles for linear terms. The semi- 
stationary transitions do not correspond to great circles, since the operators are not 
orthogonal to the rotation axis, but intersect them at right angles at the midpoints 
between coordinate axes (see Fig. 1). Their contributions to the average Hamiltonian 
vanish if the number of occurrences of ap is equal to the number of occurrences of 
-a& A trajectory a$ + CY@’ must therefore be balanced by one from --o/3 to -a/3’ 
which lies on the opposite side of the same circle, up to an inversion at the origin. A 
single cross term can be eliminated by two successive inversions ~$3 + -@a --, ~$3. If 
all three terms are to be eliminated simultaneously, semistationary trajectories are 
unavoidable. Therefore, a minimum of four 90” rotations is necessary in this case, 
combined into one 360” rotation. All bilinear terms can be eliminated with a sequence 
of twenty-four 90” rotations. An example of such a sequence is 

FIG. 4. Trajectory of XX, YY, and ZZ under the windowless six-pulse sequence that eliminates them 
simultaneously. All three terms follow the same trajectory. 
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Table 3 summarizes the number of 90” rotations that eliminate different terms of the 
Hamiltonian. 

Isotropic chemical shift. Instead of averaging the linear terms to zero, it is equally 
possible to average them to a nonvanishing isotropic value. At high fields, isotropic 
chemical shifts are usually observed by rapid spinning of the sample around an axis 
tilted by the magic angle 0, = 54.7” with respect to the static magnetic field. As an 
alternative, it is also possible to keep the sample tixed and move the magnetic field 
around a suitable trajectory. The chemical shift becomes truncated with respect to the 
instantaneous direction of the precessing magnetic field. It thus becomes time depen- 
dent and can be averaged to its isotropic value by choosing an appropriate trajectory 
for the magnetic field. Two possible experiments are shown in Fig. 5. In experiment 
a, a magnetic field is rotated at the magic angle around the laboratory z axis. Experiment 
b is a “sudden” version, corresponding to magic-angle hopping, that samples three 
mutually orthogonal space directions. The pulses between the “static” magnetic fields 
rotate the spins to follow the changing direction of the magnetic field. Both experiments 
not only eliminate the chemical-shift anisotropy, but also average dipolar and quad- 
rupolar interactions to their isotropic value, i.e., to zero. The averaging of the inter- 
actions occurs in two steps. First, they are truncated with respect to the insumtaneous 
direction of the magnetic field. On a time scale slow compared to the Larmor frequency, 
the magnetic field is then moved to sample at least three orthogonal directions 
in space. 

If isotropic chemical shifts are to be observed at low magnetic fields, it is possible 
to eliminate second-rank interactions with a multiple-pulse sequence that leads to a 
nonvanishing linear term in the average Hamiltonian which can be made isotropic 
by cyclically permuting the direction of the pulses and the external field. Using the 
pulse sequence 

(ZEC)~, ) II191 

FIG. 5. Two experiments that recover isotropic chemical shifts from a static sample. 
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one must apply the “static” magnetic fields &, in the following directions: 

Bo X Y Z 

BP (ZTE~)~(XjEj$( yFjF>, . WI 

In the limit of delta-function pulses, this sequence creates the desired average Ham- 
iltonian 

SO’ = l/3(& + a, + a,)(Z, + ZY + I,), 1211 
while the bilinear terms vanish. With &“i as given in Eq. [I] we find 

e@” = -yBo( 1 - a) l/3(1, + Z, + I,), PI 
where B. represents the strength of the magnetic field which is applied sequentially 
along the x, y, and z direction of the laboratory frame of reference. u = 1/3(u, + a,,,, 
+ a,,) represents the isotropic chemical shift. The sequence may also be used in the 
windowless limit. The resulting average Hamiltonian then becomes 

c.@” = -yBo( 1 - a)( 1 + 4/?r)/6(ZX + Z, + I,), 

with a slightly bigger scaling factor. 

v31 

Relationship to iterative pulse schemes at high jeld. Iterative schemes to generate 
pulse sequences have come into use mainly in the context of composite pulses and 
spin decoupling (26, 17). In such a procedure, an initial pulse sequence is changed by 
shifting the phase of the whole sequence and permuting parts of the sequence from 
one end to the other. A phase shift 4 rotates the average Hamiltonian SPY of the original 
sequence into 

21~ e-Wz~eWz. v41 
If the element that is permuted generates a propagator Up and is permuted from 

right to left, the new sequence has an average Hamiltonian 

2’= upG%cJ;. WI 
The altered sequences are then combined into a new, longer sequence such that the 

overall average Hamiltonian corresponds more closely to the desired one. The extended 
sequence is then used again as the next seed for the recursive expansion procedure. 

The average Hamiltonian of a pulse sequence can in general contain all the terms 
of the low-field Hamiltonian, Eq. [ 11. The average Hamiltonian G?’ can therefore be 
considered to describe a spin system in a low magnetic field and the effect of the phase 
shifts and permutations are analogous to magnetic field pulses applied to that system. 

A well-known expansion scheme is MLEV. As shown in Fig. 6, it includes the two 
steps of permuting a 180” pulse of the original sequence (Fig. 6b) and combining the 
original and the permuted sequences with their phase-shifted images to form a new 
sequence (Fig. 6~). The individual cycles have the average Hamiltonians 

2, e-ixIx@eisIx, e-irIX e-idz*eirIzeidx, e-idz~eidl. WI 

The same terms are obtained if the analog of the Carr-Purcell sequence, (-?r,+r,- 
T~-?T=-)~, is applied to a low-field Hamiltonian. The error terms occurring in high- 
field pulse sequences contain in general all the terms of the low-field Hamiltonian and 
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(4 i Rx ii R,’ 
R,R, i? 

R;‘R -’ R, i R;’ 
x 

0 / =X p.? XX *z 

I 
I RxRz HZF 
I HZF RXHZFRX-’ 

R;‘R;’ 
RzHZFRz-’ 

I 
I 

FIG. 6. Correspondence between the MLEV recursive expansion scheme (a)-(c) and the zero-field analog 
of the Carr-Purcell sequence (d). 

the MLEV scheme is designed to remove all three linear terms, thereby ensuring good 
decoupling. Other iterative schemes that have been conceived to eliminate linear and 
bilinear terms (14) also correspond to zero-field pulse sequences. 

CONCLUSIONS 

It is possible to develop pulse sequences that selectively average out certain terms 
of the full low-field spin Hamiltonian. The resulting pulse sequences tend to be longer 
than the corresponding pulse sequences at high magnetic field because they have to 
cancel a larger number of terms. The duality between spatial rotations of the sample 
and rotation of the spins generated by magnetic fields provide important insight into 
zero- as well as high-field experiments and suggests possible alternatives to existing 
experiments using sample reorientation. Information about the transformation prop- 
erties and the possible ways to eliminate the terms of the zero-field Hamilton&n is 
also important in high-field experiments where these terms appear as imperfections. 

One problem not covered in this article is that in zero field it is not possible to 
distinguish the different spin species present in the sample by their resonance frequency. 
A single magnetic field pulse therefore affects in general all the spins present in the 
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sample, rotating them through different angles determined by the gyromagnetic ratios. 
Several possibilities can be envisaged for the design of experiments that act selectively 
on only one spin species. One is to capitalize on certain special values of gyromagnetic 
ratios. Thus it has been shown (8) that it is possible to apply pulses that act like 27r 
pulses on protons and as a/2 pulses on 13C. In the limit of ideal delta-function pulses, 
such a pulse affects only the 13C system and can thus be used for selective experiments 
in heteronuclear systems. Another possibility is the use of bistable excitation sequences 
(18) that generate a composite pulse which acts as a perfect pulse for a certain range 
of gyromagnetic ratios and leaves spins with other y values unaffected. 

ACKNOWLEDGMENTS 

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, 
Materials Sciences Division of the U.S. Department of Energy under Contract DE-A&3-76SFOOO98. 

REFERENCES 

1. U. HAEBERLEN, “High Resolution NMR in Solids, Selective Averaging,” Academic Press, New York, 
1976. 

2. I. J. LOWE, Phys. Rev. Lett. 2, 285 (1959). 
3. E. R. ANDREW, A. BRADBURY, R. G. EADES, AND G. J. JENKS, Nature (London) 188, 1096 (1960). 
4. J. SCHAEFER AND E. 0. STWSKAL, J. Am. Chem. Sot. 98, 1031 (1976). 
5. A. BAX, N. M. SZEVERENYI, AND G. E. MACIEL, J. Magn. Reson. 52, 147 (1983). 
6. N. F. k4MSAY AND R. V. POuND, Phys. Rev. 81,278 (1951). 
7. D. P. WEITEKAMP, A. BIELECKI, D. ZAX, K. ZILM, AM) A. PINES, Phys. Rev. Lett. SO, 1807 (1983). 

8. J. M. MILLER, A. M. THAYER, A. BIELECKI, D. B. ZAX, AND A. PINES, J. Chem. Phys. 83,934 (1985). 
9. A. THAYER AND A. PINES, Act. Chem. Rex 20,47 (1987). 

IO. A. PINES, in “Proceedings of the 100th Fermi School on Physics” (B. Maraviglia, Ed.), in press. 
11. R. KREIS, D. SIJTER, AND R. R. ERNST, Chem. Phys. Lett. 118, 120 (1985). 
12. A. M. THAYER AND A. PINES, J. Magn. Reson. 70, 518 (1986). 
13. K. V. SCHENKER, D. SUTER, AND A. PINES, J. Magn. Reson. 73,99-l 13. 
14. A. J. SHAKA, C. J. LEE, AND A. PINES, to be published. 
IS. D. P. BURUM, M. LINDER, AND R. R. ERNST, J. Magn. Reson. 44, 173 (1981). 
16. M. H. LEVIS, Prog. NMR Spectrosc. 18,6 1 (1986). 
17. A. J. SHAKA AND J. KEELER, Prog. NMR Spectrosc. 19,47 (1986). 
18. H. M. CHO, J. BAUM, AND A. PINES, J. Chem. Phys., in press. 


