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The question of whether a molecule can be made to absorb and emit photons only in groups of n is treated. 
Pulse sequences are introduced which in effect selectively induce the absorption of only groups of n photons. 
This causes only n -quantum transitions even when many other transitions might be resonant. The technique 
involves repeated phase shifts of 211' In in the radiation to build up the selected coherences and cancel all other 
coherences, and is applicable to a wide range of spectroscopic systems. Coherent averaging theory is extended 
to describe selective sequences and demonstrates that n-quantum selectivity is possible to arbitrarily high order 
in the average Hamiltonian expansion. High-order selectivity requires many phase shifts, however, and for this 
reason the residual nonselective effects of sequences which are selective to only a finite order are calculated. 
Selective sequences are applied to the multiple-quantum NMR of oriented molecules, where in combination 
with time reversal sequences they produce a much more efficient transfer of the population differences into 
selected coherences than is obtainable by normal wideband pumping. For example, the 10-quantum transition 
in a 1000pin system can be enhanced by more than four orders of magnitude. Experiments on selective excitation 
of the 4-quantum transitions in oriented benzene verify the expected enhancement. 

I. INTRODUCTION 

It has recently been shown that the Zeeman quantum 
number selection rule t::.m = 1 of conventional Fourier 
transform NMR can be overcome in a systematic manner 
by suitably designed pulse sequences, thus permitting 
the observation of multiple-quantum (t::.m = n) coher­
ences. 1

-
4 The usefulness of observing multiple-quantum 

transitions can be understood by considering a schematic 
energy level diagram for a system of N spins i without 
symmetry, shown in Fig. 1. The number of levels for 
each allowed eigenvalue of I. '" m from m = N /2 to m = - N / 
2 is (m+(ffI2»)' With this distribution, the number of al­
lowed single-quantum transitions increases exponentially 
with N, and in general the single-quantum transitions 
are only resolvable if there are few spins, or if many of 
the transitions are either degenerate or forbidden. How­
ever, there is only one transition with t::.m=N, cor­
responding to aU N spins flipping together, and at most 
2N transitions with t::.m = N - 1. In an oriented system 
such as a liquid crystal, the total spectral width may 
be many kHz, with each line typically a few Hz wide. 
Thus, high multiple-quantum spectra are well resolved 
even if N is large. 

This point is illustrated by Fig. 2, which shows the 
multiple-quantum spectra of benzene oriented in a liquid 
crystalline solvent. The six-quantum spectrum has only 
one line, and the five-quantum spectrum has only two 
lines because of the high molecular symmetry; the nor­
mal single-quantum spectrum has 76 lines. 5 Unfor­
tunately, the enhanced simplicity of multiple-quantum 
spectra has to be balanced against a reduced overall 
intensity. On the average, every symmetry allowed 
transition is pumped about equally well (independent of 
t::.m) in the standard multiple-quantum experiment. 6 As 
a result, total intensities of the high mUltiple-quantum 
spectra in these totally nonselective experiments are 
much weaker than the total intensity of the single-quan­
tum spectrum, and most of the spectral intensity is 
"wasted" in unresolvable transitions. 

Clearly, it would be extremely valuable if we were 
able to distribute the total spectral intensity between only 
a few orders of coherence, instead of driving all transi­
tions equally. From the viewpoint of perturbation theory 
this appears impossible because a multiple-quantum 
transition occurs only with irradiation which also ex­
cites lower quantum tranSitions, particularly when all 
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FIG. 1. Energy level diagram for a general system with N 
spins i. Each value of M has degeneracy (~+{NI2»)' correspond­
ing to a binomial distribution. 

2084 J. Chern. Phys. 73(5),1 Sept. 1980 0021-9606/80/172084-16$01.00 © 1980 American I nstitute of Physics 



Warren, Weitekamp, and Pines: Selective excitation of multiple-quantum transitions 2085 

o 2t.", 

Oriented Benzene 
n-Quontum Echo Spectra 

n=3 

3t.", 

Frequency 

n=4 n=5 n=6 

4t.", 5t.", 6t.", 

FIG. 2. The multiple-quantum spectra of benzene oriented in a liquid crystal solvent. The number of allowed transitions de­
creases dramatically as t:.M increases. 

transitions are simultaneously resonant as required by 
the nearly equal spin energy level spacing. Thus, 
aside from even-odd selection due to the bilinear form 
of spin coupling operators,6 no general method of selec­
tive excitation has been proposed. In this paper and the 
letter which preceded it,7 we demonstrate that selective 
excitation of multiple-quantum coherences in NMR is 
theoretically-and experimentally possible as illustrated 
in Fig. 3. We will show that this technique can provide 
enormous signal enhancement, and that general selective 
sequences are applicable to a wide range of spectro­
scopic systems. 

II. GENERAL THEORY OF SELECTIVE SEQUENCES 

A. Review of average Hamiltonian theory 

The effect of any sequence of irradiating pulses and 
delays on a general system in the absence of relaxation 
can be represented by a single unitary transformation 
U, called the propagator. Calculating U directly by 
multiplying together the propagators for each part of 
the sequence is extremely tedious if many eigenstates 
are involved. However, this calculation can be avoided 
for certain pulse sequences by a technique known as 
average Hamiltonian theory. This technique is thorough-

Oriented Benzene 
O,4-Quantum Selective Excitation 

Frequency 

FIG. 3. The multiple-quantum spectra of benzene oriented in a liquid crystal solvent, using selective excitation of zero-quantum 
and four-quantum transitions. 
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ly documented, 8,9 so we will reproduce in this sub­
section only a brief summary of previous results which 
we require for our development. In the next section we 
will generalize the results to describe sequences which 
are inherently selective. 

The total Hamiltonian of a system is written as Je(t) 

= Je'llt +:!Ct(t), where Je'llt is the internal Hamiltonian of 
the system (for example, the interactions between pairs 
of magnetic dipoles) and Je1 (t) is the explicitly time-de­
pendent interaction controlled by the experimenter (for 
example, the interaction with radiation). Je1(t) is termed 
cyclic with cycle time te if Je1(t) and the propagator U1(t) 
= Texp [- i nJC1(t') dt'] (T is the Dyson time-ordering 
operator) are periodic, and if te is the shortest interval 
that constitutes a period for both U(t) and JC1(t). 

Jelll t is considered to be time independent, so JC( t) 
is cyclic if JC1 (t) is cyclic. If Je1 (t) is a pulse sequence 
made up of an integral number N of cycles, the prop­
agator for the entire sequence is the Nth power of the 
propagator corresponding to one cycle, and therefore 
only a single cycle need be considered. 

The propagator for a Single cycle can be shown to be 

U = exp( - iJCte) = exp [ - i(;re(D) +~(1) + ••• + ~(n) + ••• )te] 

(1) 

(4) 
and 

:JCtat(t) = Ui1(t)JC'llt U1(t) . 

This is merely a Magnus expansion1D of the propagator 
in powers of the cycle time. The average Hamiltonian 
expansion is a perturbation expansion in powers of a 
smallness parameter te that has a phYSical meaning; te 
and Jelllt(t) are simultaneously varied by lengthening the 
sequence. For this reason, jCli) is termed a correction 
term of order i and is proportional to (te)'. :reID) is the 
zero-order or average Hamiltonian, and Je is the ef­
fective Hamiltonian. The advantage of Eq. (1) is that 
a complex time dependent process has been expressed 
by a time independent Hamiltonian. 

Pulse sequences are usually designed so that jC<D) has 
some particular desired property, and then higher-order 
terms are minimized. For example, line narrowing 
sequences for solids completely suppress the dipolar or 
quadrupolar interaction, but not the chemical shift in­
teraction, in this lowest-order term. 11 If a pulse se­
quence is symmetriC, such that xlllt(t) =JC1Ilt(te - t), JCU) 

and all other odd-order correction terms vanish. Sym­
metric pulse sequences are easy to deSign, so the major 
contributions to residual linewidths for simple line nar­
rowing sequences come from jC(2) and from pulse se-

quence imperfections (inhomogeneity, timing errors, and 
the like). A very powerful method of eliminating these 
terms involves alternating between two or more different 
cycles (called subcycles) to form a new, larger cycle 
which has smaller higher-order terms. Under certain 
conditions, some of the higher-order terms for the en­
tire cycle are simply equal to the sum of the correspond­
ing terms for the subcyclesj such terms are said to de­
couple. 12 Decoupled pulse cycles for line narrowing 
have been produced that have ;iC(2) = 0 for the dipolar 
Hamiltonian, and have small error terms. 12 

Higher-order terms are usually difficult to calculate, 
but for line narrowing sequences their size (and therefore 
their contribution to residual line widths) can be esti­
mated. If ;iC<D) =:reU) =jC(2) = ••• =iC<n-l) = 0, then re<.) =jC<.), 
where Je<.) is defined as 

(5) 

k=n, n+l, ... ,2n. 

Reference 9(a) contains a weaker version of this theo­
rem, which requires :jC<il = 0 for all j < n for :reIn) =~<n), 
but inspection of their proof13 leads to the immediate 
conclusion that jC<}) = 0 for all j < (n - 1)/2 is suffiCient 
for jC<n) =~<n). 

The volume of integration is (te)n +1, so ~<") can be 
easily estimated in terms of Je lllt • To do this estima­
tion we need to use the concept of the norm of a matrix. 
We will define the norm of an arbitrary NTxNT matrix 
A as 

IlAIi = [NIT Tr(AAt
) ] 

1/2 
(6) 

IIAII is invariant under unitary transformations, so if 
A is Hermitian, IIAII is the root-mean square eigen­
value of A, called Ml /2(A). Other convenient proper­
ties that are easily proven are as follows: 

(1) If A and B are Hermitian, IIABII = II BAli :SNTIIAIIIIBIi. 

(2) 11111 = 1, where I is the identity matrix. 

(3) If A is Hermitian, IIA"II is the square root of the 
(2n)th moment of the distribution of the eigenvalues, 
called M~~2(A). Since Ml,,'2(A):::[M~/2(A)]1l for any dis­
tribution, IIA"II::: (IIAII)n. 

(4) If A and B are similar Hermitian matrices, such 
that A = UBUt, IIABII:S IIA211 = IIB211. 

(5) However, if A and B are two different matrices, 
with nothing else known about either matrix, then 
(AB)"",=L;.A",. B'n is the sum of NT number~, which we 
expect will add randomly. Then (I (AB)"," I ) 
- NT (IA",. B.nI2) - NT((iA",. 12) (I B." 12) )1/2, and this im­
plies IIABII - IIAIIII BII. 

Properties (2) and (4) imply that IIJClIlt(tn+l) 
x:!ClIlt(tn) ••• :!ClIlt(tl)1I :s II [Je'llt(tl)] n+lll. For many sys­
tems the eigenvalues of JC tat have roughly a GaUSSian 
distribution, and in this case 
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Mi!2=[1·3.5 ... (2n-l)]1/2(M2
1

/
2)n 

= [(2n) I /(2 n)nl ]l/2(Mi'2)n . 

Thus, 

11:!C(n) tell :S (UJC'ut tell,..l ){(2n) 1/2nn I [(n + 1)!]2 P / 2 . 

(7) 

(8) 

In fact, if the cycle contains many pulses so that 3Cht(t) 
varies rapidly, we expect that IIJClut(t,..l)JCtnt(tn)·· ·JCsnt(tl)1I 
- II JC1ntil ,..1. Thus, II ~(n) tell - II JC1nt tell,..l /(n + 1)!, and for 
those terms for which.jC(m+l) =jC(m+l), II jC(n+1) II /11 jC(n) II 
- l13Cht tell /(n + 1). For higher-order terms expressions 
involving commutators, such as Eqs. (3) and (4), are 
required. 

All of the results presented so far are applicable to 
any cyclic pulse sequence. We will now extend average 
Hamiltonian theory, in order to create pulse sequences 
which selectively excite only a few transitions. 

B. Extension of average Hamiltonian theory to 
selective sequences 

1. Definitions 

We term an operator nk-quantum selective if it can be 
completely decomposed into irreducible tensors T~It, 
with k allowed to have any integral value including O. If 
only k = ± 1 is required, the operator is termed n-quan­
tum selective. If tensor components that are not inte­
gral multiples of n are required, the operator is non­
selective. Any nonselective operator can be decom­
posed into a nk-quantum selective operator and a re­
mainder which we call non-nk-quanturn selective (ab­
breviated nns). From the definition of tensor operators, 
the product or sum of two nk-quantum operators is also 
an nk-quantum operator. In addition, an operator is 
nk-quantum selective if and only if it is invariant to a 
rotation 6f 21T/n about the z axis. 

We term a cyclic pulse sequence j-order nk-quantum 
selective if aU the o,Perators ;re<ll(i:S j) in the average 
Hamiltonian expansion of the propagator are nk-quantum 
selective operators. (For example, if :iC(O) is 4k-quan­
tum selective but :!C(l) is not, the sequence is zero-order 
4k-quantum selective.) An equivalent definition is that 
all terms in the propagator proportional to (te)l+l(i:S j) 
are nk-quantum selective. If the initial density matrix 
has no coherences, the final density matrix will con­
tain only nk-quantum selective operators, up to terms 
proportional to (te)J+l. 

The physical meaning of nk quantum operators depends 
on the system being considered. If the axis of propaga­
tion of the radiation is chosen as the z axiS, an nk-quan­
tum operator causes a net absorption or emission of a 
multiple of n photons, and changes the z component of the 
angular momentum of the applied' field by some multiple 
of nIi. If the z component of angular momentum is a good 
quantum number for the system (as it is, for example, in 
NMR at normal magnetic field strengths), conservation 
of angular momentum implies that the system can de­
velop coherences only between states for which this quan­
tum number differs by a multiple of n. If this is not a 

good quantum number, the selection rules for n-quantum 
transitions are more complicated. 

2. Theorems for selective sequences 

Many of the theorems of average Hamiltonian theory 
are directly applicable to selective sequences. In ad­
dition, we present two new theorems which can be viewed 
as a generalization of known theorems for line narrowing 
sequences. 

Theorem I: Suppose a cycle (cycle time te ) consists 
of m subcycles (cycle times tel, tel.' ••• , tefft)' each of 
which is j-order nk-quantum selective. Then the cycle 
is also j-order nk-quantum selective. Furthermore, the 
non-nk-quantum selective (nns) part of jC(J+ll for the cycle 
decouples, i.e., 

III 

(JCIJ+1)te )1I118 = L (~J+1)tel)1I118 • 
1.1 

(9) 

Proof: For simplicity of notation we will explicitly 
prove only the case m = 2, since repeated application of 
this theorem with m = 2 proves the theorem for arbitrary 
m. 

Because the propagator for the cycle is equal to the 
product of the propagators for the two subcycles, we have 

exp[ - i(jCIO) +jCllJ + ... ) te] =exp[ - i{:iq0) +~1l + •.. )te2] 

x exp( - i(jci°) +JC11l + ... )tel] • 

(10) 

By expanding in powers of te , tel, and te2 and recalling 
that jC(lt) -~ and jC~lt) -t~J' we find that the term propor­
tional to (fer l is 

-iJC11t)t +~ L:' jCI"')jCW')t 2+ ... 
e 2 "'."" e 

x (- iJCiltl) tel +!. L' jCi"'1) :iei1t\') t ~1 + ... ) (11) 
2 "'1''''1' 

k' +k" =k -1 , (12) 

k~ +k~' =k1 -1 , (13) 

k~ +k~' =k2 - 1 , (14) 

where the terms represented by ( ... ) are products of 
three or more operators, multiplied by (te )3 or higher 
powers of te' :ie(It) can only appear in the first term on 
the Ihs, and all other terms must have smaller super­
scripts. By assumption, :ie(ltl) is nk-quantum selective 
for all kl :Sj. When k =0, Eq. (11) simplifies to 

(15) 

so :ie(O) is nk-quantum selective if p~- O. It follows by in­
duction that all the operators :!C(It) (k Sj) are nk-quantum 
selective by considering progressively higher powers of 
te , through (te)1+1. 

The only possible nns term proportional to (tc )J+2 on 
the Ihs is then (- i:JC(J+1) te )lIu since all other terms in­
volve only lower-order operators which are nk-quantum 
selective. Similarly, the only possible nns term on the 
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rhs is - i(jC(J+l) tel +:iC(J+1) te2)nna. By equating these two 
expressions, Theorem I is proven. 

The only property of nk-quantum selective operators 
that was needed to prove Theorem I was closure of this 
set of operators under addition and multiplication, and 
similar theorems can be proven for any other set of 
operators with these two closure properties. In par­
ticular, the null set is closed under addition and multi­
plication. A decoupling theorem for this case (i. e. 
-(0) -(1) -(J) , 
JC =JC = ... =JC =0) was proven by Burum and 
Rhim.12 Another set which satisfies the required closure 
properties is the set of N-quantum operators in an N 
spin-i NMR system, plus the populations of the two ex­
treme sates; this case will be discussed later. 

The size of the first nns term for a j -order nk -quan­
tum selective sequence can be readily estimated. 

Theorem II: If a sequence is j-order nk-quantum 
selective, the non-nk-quantum selective (nns) part of 
:iC(J+1) can be written as 

(16) 

Proof: The proof of this theorem is identical to the 
proof that jC( J+1) has this form if jC(J) = 0 for all i ::s j, con­
tained in Ref. 9(a), so we will merely outline it. The 
most general expression for the term proportional to 
(te)J+2 in the propagator is 

(te s,t J+2 (12 
(- i)1+2 Jo dt}+2 0 dtJ+1 • •• Jo 

(17) 

Expanding U=exp[-i(:iC(O) +:iC(1) + ... +:iC(n) + ••• )te ] as in 
the lhs of Eq. (11), the only possible non-nk-quantum 
selective term proportional to (te)J+2 is (- i:iC(J+l) te)us , 
which proves the theorem. 

It should be noted that Eq. (16) is only valid for the 
first nns term, while if :iC(n) = 0 for all n <j a similar ex­
pression holds for all terms up to :iC(2n). The difference 
is that the lhs of Eq. (11) contains operators such as 
.'iC(-1) 3C(-Z) , which vanish if either ;re(-1) or ;re(-2) vanishes, 
but which are generally nk-quantum selective only if 
both :iC(k1 ) and :iC(-z) are nk-quantum selective. 

c. Design of selective sequences 

1. Zero-order selective sequences 

Starting from any cyclic sequence of pulses and de­
lays, we can produce a sequence which is zero-order 
nk-quantum selective, using a technique which we call 
phase cycling. This is illustrated in Fig. 4(a). We as­
sume that the cyclic sequence has a duration ATp (which 
we call a subcycle), an effective Hamiltonian JCo =~o, 
+~l) + ... +~n) + ... , and a propagator Uo 
=exp(-iJCoATp). At the end of the interval AT", the se­
quence is repeated with all radiation phase shifted by 
cP = 27T/n about the z aXiS, giving a new effective Hamil­
tonian JC~ and propagator U~. JC~ is related to JCo by a 

$0 $.p "" .... "" .. " ...... ~n-I).p 

-

L-L--

FIG. 4. (a) Phase cycling can be used to create nk-quantum 
selective sequences, using phase shifts of <p = 27f/n. The cycle 
of n subcycles is more selective by one order in the average 
Hamiltonian theory expansion. (b) The cycle of 2n subcycles 
formed by phase cycling and symmetrization is more selective 
by two orders. 

rotation of - cP about the z axis: 

JCI/> = exp(icpI.)JCo exp(- iCPI.) , 

(JCI/»iJ := (JCo)iJ exp[icp (m I - m J)] , 

and U~ is related to Uo in exactly the same manner. 

(18) 

(19) 

This phase shift is repeated n times, creating a cycle 
with cycle time te =nATp. We would like to calculate 
Jew for the cycle. Since te is proportional to A Tp it is 
clear that ~J) and jCw scale in exactly the same manner 
when te is changed, and by equating terms proportional 
to te with those proportional to A Tp , we find 

_ 1 n-1 _ 1 n _ 

JC(O) = - L JCl~ = - L exp(ilcpI.)~O) exp(- ilCPI .. ) • 
n/=o n/=o 

(20) 

This sum scales the matrix element (~O»IJ by (l/n) 
x 2: ~:~ e IZrP / / n, where p = m I - m J; this scaling factor is 
zero unless p =nk. Therefore, ;re(0) is a pure nk-quantum 
selective operator. Since :iC(0) decouples, any other 
permutation of the subcycles is also acceptable. Higher 
order terms have some nk-quantum selective parts (for 
example, there is a contribution l:;,:A:iCl~) to :iC(1» but no 
higher order terms are completely selective. Thus, 
the sequence obtained by phase cycling is zero-order nk­
quantum selective . 

If te can be made arbitrarily small, aU the higher­
order terms in the average Hamiltonian expansion be­
come unimportant, and a zero-order selective sequence 
becomes completely selective; of course, the selective 
term II :iC(0) te II - 0 as te - 0, but this can be remedied by 
repeating the zero-order sequences many times. In 
general, however, fe cannot be made arbitrarily small, 
so higher-order selectivity is desirable. One simple 
way to get a first-order selective sequence is to sym­
metrize the cycle, as illustrated in Fig. 4(b). :iC(0) is 
still nk-quantum selective, and the symmetrization 
causes;rew to vanish for all odd j, so the first non­
selective term is :iC(2) • 

2. Sequences selective to arbitrary order 

Suppose that the sequence for JCo in Fig. 4(a) is al­
ready j-order nk-quantum selective, instead of being 
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nonselective as was assumed earlier. Theorem I proves 
that the sequence obtained by phase cycling is (j + 1)­
order nk-quantum selective, because CjC(J+l)II .. de­
couples: 

n-1 

(:iC(}o1»""" = L (:iCWl)IIDB 
1=0 

n-1 

= L [exp(ilcpI.)~J+1) exp(-ilcpl.)]1I1l8 =0. (21) 
1=0 

Therefore, starting from a nonselective 3Co, (j + 1) 
phase cyclings produce a sequence that is j-order nk­
quantum selective, requiring n(J+l) subcycles; each block 
of n subcycles is zero-order nk-quantum selective, each 
block of n2 subcycles is first-order nk-quantum selective, 
and so forth. For example, a first-order 4k-quantum 
selective sequence may be constructed from 42 = 16 sub­
cycles, and the phases of the subcycles can be written 
schematically (0: cp =0, 1: cp =1T/2, 2: cp =1T, 3: cp = 31T/2) 
as (0123)(1230)(2301)(3012). Each group in paren­
theses is a zero-order nk-quantum selective sequence, 
and is phase shifted by 1T/2 to produce the next group. 

In the absence of relaxation, there is no limit to the 
number of times phase cycling can be applied, and there 
fore sequences which are selective to arbitrarily high 
order can be designed. In any real system, only a 
limited number of subcycles could be completed before 
relaxation effects make the average Hamiltonian calcula­
tion invalid. One way to reduce the number of subcycles 
required to achieve a given order of selectivity is to 
combine phase cycling and symmetrization, as in Fig. 
4(b). The sequence is first-order nk-quantum selective 
even if :!Co is nonselective. If:!Co is already j -order nk­
quantum selective (j odd), the phase cycling and sym­
metrization requires 2n subcycles to make a (j +2)-or­
der nk-quantum selective sequence, instead of the n2 

subcycles required for two phase cyclings. Thus, a 
(2j +1)-order nk-quantum selective sequence requires 
(2n)J+1 subcycles [(j + 1) phase cyclings and (j + 1) sym­
metrizations] and a (2j)-order nk-quantum selective se­
quence requires n(2n)J subcycles [(j + 1) phase cyclings 
and j symmetrizations). For example, a third-order 4k­
quantum selective sequence requires (2n)2 =64 subcycles, 
and the relative phases can be written schematically as 
(0123)(3210)(1230)(0321)(2301)(1032)(3012~(2103)(3012) 

(2103) (2301) (1032) (1230) (0321) (0123) (3210). 

III. APPLICATION OF SELECTIVE SEQUENCES TO 
MULTIPLE-QUANTUM NMR 

A. Motivation 

In this section the general principles of selective ex­
citation are elaborated for the particular case of a sys­
tem of directly dipole coupled nuclear spins. The anal­
ysis of the spectral line pOSitions of such a system sup­
plies structural information on the lengths and orienta­
tions of internuclear vectors and analysis of the relaxa­
tion times provides information on molecular motion. 
Neither analysis can be completed unless the spectrum 
contains resolved assignable lines. The high resolution 
and simplicity of the high multiple-quantum spectra make 
them preferable or indispensable for these analyses. It 

• 
• 
• 

JII
int 

= JIIo' </>z = flip ongle </>, phose z 

= JII</>, t-Tp S t < 2t-Tp 

• 
• 
• 

= JII(n-il</>' (n-I)Tp S t <nt-Tp = JII(n_il</>, (n-ilt-Tp S t < nt-Tp 

FIG. 5. The analogy between a phase cycled sequence consist­
ing of subcycles with effective Hamiltonians ;IC. and a pulse 
sequence on a hypothetical system with 3Cut =:Ieo. Average 
Hamiltonian theory can be applied to the pulse sequence. 

will be shown how the use of selective sequences prom­
ises to o~ercome the difficulty of small signal inten­
sity, thus making these analyses possible in large spin 
systems. 

The Hamiltonian for the N spins t of an oriented mole­
cule in a large magnetic field can be written in the ro­
tating frame (in units of Ii = 1) as 

(22) 

Je~w = t:J.wl. is the resonance offset term, JeD, •• = ~ I>J -IJ 

x (3/. I /. J -II 'IJ) is the secular portion of the dipolar 
Hamiltonian, and 3C,., is the time-dependent interaction 
between the mOlecules and applied radiation. Other 
interactions such as chemical shifts or scalar spin-spin 
couplings may also be accounted for, but we will not con­
sider them here. 

The task we set out to accomplish in this section is to 
construct a rapidly convergent effective Hamiltonian for 
an excitation cycle which will contain, in its leading 
terms, operators T!. with rank j u(> to the maximum 
value j = N and components nk!S j. Such a Hamiltonian 
will create high quantum coherences selectively even if 
it acts only for short times such that IlJetc II «1. The 
theoretical tool to be used is a nested series of average 
Hamiltonian expansions with each successive expansion 
involving a longer cycle time. This approach is exact 
when the effective Hamiltonian of each of the preceding 
expansions is used as the starting point for the next ex­
pansion. In practice, one designs sequences with rapid­
ly convergent expansions and proceeds by using only the 
first few terms as an apprOXimation to the effective 
Hamiltonian. Precedents for this, procedure exist. It 
is implicitly used whenever a rotating frame Hamiltonian 
is used as a starting point for an averll.ge Hamiltonian 
expansion. 1• Another example is the" second averaging" 
procedure used to explain off-resonance effects in multi­
ple pulse line narrowing experiments. 15 

The expansions which were the subject of the previous 
section were the final expansions, in which the effective 
Hamiltonians Je. for the subcycles were assumed to be 
known. Figure 5 shows schematically how the phase 
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(0) 
JJI'T' = - nt J p ""'p 

(T 0 T 0 2T 0 TOT) 
N 

(b) 

FIG. 6. Possible pulse sequences for the subcycles in Fig. 4. 
In Fig. 6(a), time reversal sequences generate JCj,T'=-JCpT, 
so that II JColl « II JCD ••• II, but 3Co contains multiple-quantum 
coherences. In Fig. 6(b), a WAHUHA sequence with a long 
cycle time has the same effect. 

.. 
shifts of the cycle may be viewed as a series of z pulses 
on a system with an otherwise time independent Hamil­
tonian Je~.o. In the next section the subcycles are 
treated. 

B. The design of effective subcycles 

If a subcycle can be designed which has high quantum 
operators in the leading terms of its effective Hamil­
tonian Je ~, then the cycle need only be selective to a 
low order since high quantum operators will appear in 
its leading terms. Since Jelnt contains only first and 
second rank operators, no simple rotation of JeIDt can 
contain high quantum operators. It is only through the 
action of the couplings between spins that such opera­
tors can appear in the evolution, so it appears desirable 
that the subcycle last at least long enough that II JeD ... il Tpll 
-1. An apparent dilemma arises here though, for if the 
cycle consists of many subcycles, then II JeD ... tell> 1 and 
convergence of the effective Hamiltonian expansion be­
comes doubtful. The solution to this problem is to ar­
range the internal structure of the subcycles so that 
II JeD ... il Tp II -1 but II JC~ il Tp II «1. Several approaches 
will be discussed. One general approach to subcycle 
design uses the method of time reversal16 and is il­
lustrated in Fig. 6(a). J<;, and ac; are approximations 
to the effective Hamiltonians for the periods T and T', 
respectively. Before examining particular sequences 
for the periods T, T', and ilT;, we indicate how time 
reversal leads to the desired conditions that Je~ con­
tains high quantum operators and that II Je~ il Tp II « 1. 

Pulse sequences can be designed with 3CbO) =~ (JeD."" 
+ JeD. yy) = - ~ JeD ... , and the effect of such sequences is 
to make the spin system appear to evolve backwards in 
time. 16 If such a pulse sequence is applied for a time 
2T and then turned off, the initial condition will return 
after a time T. If II JeD ... Til ~ 1, both the forward time 
and reversed time propagators can contain irreducible 
tensor operators of arbitrarily high rank, but will com­
mute with I.. Similar ly, pulse sequences can be designed 
with 3CbO) =~(JeD.YY +JeD .... ) = -~JeD."'" In this case, the 

propagator obtained from a sequence with II JeD. lOX T II ~ 1 
will contain irreducible tensor operators of arbitrarily 
high rank, but will not commute with I.. Such a propaga­
tor can generate multiple-quantum coherences and can 
be viewed as a multiple-quantum rotation (as opposed to 
the rotation produced by a single strong pulse, which 
will only generate single-quantum coherences from a 
density matrix proportional to I.). 

The propagator for the subcycle of Fig. 6(a) is U(ilTp) 

=exp(-iJe; T') exp(-iJewilT;) exp(-iJ<;, T). Time re­
versal techniques may be used to arrange that Je£ T' 
= - Jep T. When this condition holds, the periods T and 
T' may be viewed as a complementary pair of multiple­
quantum rotations which sandwich the period ilT;. To­
gether they form a cycle and the average Hamiltonian for 
this cycle is 

(23) 

If J<;, is nonsecular, bilinear, and does not commute with 
Jew, then :iC~O) will contain high multiple-quantum opera­
tors when II Jep T II ~ 1. Since the exponential operators 
constitute a unitary transformation, the norm of Je is 
conserved and II JC~O)II = (ilT; / ilTp) II Jew II. The desi;ed 
effect of redUCing the norm of the subcycle Hamiltonian 
is achieved when il T; « il T p' Since II jC(O) il T p II 
= II Jew ilT; II, the small interval ilT; may be thought of 
as an effective cycle time for the subcycle. This con­
cept is useful in that lengthening the cycle time cor­
responds to lengthening ilT; and not Tor T'. 

Several choices are possible for J<;" Je;, and Jew' 
Let Jep =Je D.n = L Pi -u (31,,1 I"i - II • Ii) produced by the 
sequence 90y-T-9~, where 90 is the pulse flip angle, 
and the subscript is the rf phase in the rotating frame; 

. Je; = - ~ JeD."" produced by a time reversing sequence, 
such as (~T-90,,- T-90,,- T-90i - T-90i/- T-90i/- T-90i/- T-
90,,-T-90,,-tT), repeated enough times to fill a period 
T' =2T; and Jew =JeD•u USing no pulses at aU (Jew is a 
"window" in the sequence). The particular time re­
versing sequence chosen for Je; has 3C~) = - tJeD.",,; it 
is symmetric, so 3Cbl) =0. Using the notation of Ref. 11 
for various error terms from pulse imperfections, we 
find ~O) (resonance offset and chemical shift terms) =0; 
3C!y (rf inhomogeneity effects) =0 (to order d; 3C~y 
(nonzero pulse width) =0; and 3CW =3Cm =3C~l) =0 can be 
achieved by symmetrization. Neglecting aU correction 
terms, we have 

3C~~)o il Tp =eXP(iJenT)(JeD ... ilT;) exp(- iJC""T) , (24) 

which conserves the even or odd quantum character of 
the initial density matrix. This is sometimes conve­
ient; for example, a third order 10k-quantum selective 
sequence requires 4n2 =400 subcycles, but a third order 
5k-quantum selective sequence only requires 100 sub­
cycles, and if no odd-quantum coherences are present 
in Je~, the two sequences have the same effect. 

The sequence 90y-T-90, only gives Jep =JeD."" if there 
are no chemical shifts, if ilw =0, if the rf homogeneity 
and the static homogeneity are perfect, and if the pulse 
widths are negligible. Thus, even if T is kept short in 
the sequences for T', it may be that IlJe~ ilTp II 
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0 '2 
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<Ix>,<Iy> 
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FIG. 7. Pulse sequences for multiple-quantum experiments. 
(a) is the general case, with preparation propagator U and mix­
ing propagator V. (b) is the simplest nonselective multiple­
quantum experiment. (c) is formally equivalent to (b) and re­
veals the symmetry between preparation and mixing. (d) is a 
fully selective experiment, involving selective preparation, 
mixing, and detection. 

» II Jew .:1r;II because neglected error terms would en­
ter. One very convenient way to lessen the severity of 
error terms is to design a sequence with an effective 
Hamiltonian having daly double-quantum terms; then 
time reversal can be achieved by a phase shift. For 
example, the sequence (~ r-90,,-r' -90,,-r-901 -r'-90! 
-r-90!-r' -90,-r-90,,-r' -90,,-~ r) has an average 
Hamiltonian :fC1°) =(r'/r+r')JeD.yy+(T/T+T')JeD,u in the 
limit of a-function pulses, and if T' = 2T, then 

(25) 

This is a pure double-quantum operator, which can be 
inverted by phase shifting the sequence by 90 0

• If the 
pulses are assumed to have a square envelope but a finite 
width t~, :fC1°) is a pure double-quantum operator for 
r' :::2T+t~; other pulse errors may change this relation 
slightly. 

The sequence can be used with x and x pulses with 
enough cycles to create a total length T such that II:!CpT II 
~ 1. Je; is provided by the same sequence, except with 
y and y pulses. Potential sequences for Jew include the 
following: 

(1) no pulses, giving Je", =JeD ••• and even-quantum selec­
tion for initialJ. condition (3I. ; 

(2) 45"-.:1r;-45,, giving all orders in 3C. ; 

(3) the same sequence as Jel>' except phase shifted 
by 45°; clearly Jew is also a pure two-quantum operator, 
but [3C~, 3C,.,l *0, so multiple-quantum coherences still 
develop; after a brief interval .:1 r;, another phase shift 
of 45 0 gives Je; . 

Experimental work to date 7.17 has used Jew = JeD .... and 
Jel> =i(JeD,yy -3CD.",,). Figure 3 is the 4k-quantum selec­
tive spectrum of oriented benzene obtained with this ap­
proach. Previous attempts with Jel> =JeD,,,,, and Je; 
= -~JeD."'" as discussed above, were less successful. 

The standard WAHUHA sequence, illustrated in Fig. 
6(b), is another possible pulse sequence for Je.. If 
Jeint =JeD ... , this sequence gives :fC(O) =3C(1) =0 (neglect­
ing pulse errors). However, if llJeD•u TII»l, Je. will 
have strong contributions from :fC(2), ;ie(4) , and higher­
order terms which contain multiple-quantum coherences. 
For some value of T such that II JeD ... T II - 1, we expect 
to find II Je", " « " JeD ••• ", but Je. will contain a substantial 
fraction of multiple-quantum coherences. The se­
quence is repeated N times, so .:1Tp =6NT. When such a 
subcycle is incorporated into a selective excitation se­
quence, it will prove useful to think of T as a fixed pa­
rameter while N is varied in order to vary the cycle 
time. 

Clearly, any other line narrowing sequence is also a 
candidate for producing Je., but this sequence would prob­
ably be the easiest to use because of its rel.atively large 
correction terms. A possible advantage over the use of 
time-reversing sequences is the very low duty cycle, 
which results because T is much longer than in a normal 
WAHUHA experiment. 

c. Selective sequences in the multiple-quantum NMR 
experiment 

Any selective sequence can be incorporated into the 
general framework of a multiple-quantum experiment, 
shown in Fig. 7(a). A large static magnetic field B =Boi 
is applied to a system of N spin-1 nuclei, giving an equi­
librium spin density matrix Po =exp(- (3'I8 )/ 

Tr[exp(- (3' I.)], where {3' = yBo /kT; in the high tempera­
ture approximation we write the reduced denSity matrix 
as Po = (21 + l)-N (- (3' I.) == {31.. A pulse sequence (which 
need not be cyclic) is applied to produce multiple-quan­
tum coherences. This is called the preparation se­
quence, and we will denote its propagator by U. The 
spins then evolve under Je1D.t for a time t1• In the sim­
plest experiments no pulses are applied during t1 ; how­
ever, decoupling, spin echoes, or more complicated 
sequences are possible if suppression of part of Jelnt is 
desired. Because only the operators I" and !.y are ob­
servable, another pulse sequence (called the mixing se­
quence) is used to transfer the multiple-quantum co­
herences that evolved during t1 into single-quantum co­
herences; we will denote the propagator for the mixing 
sequence by V. The oscillating magnetization propor­
tional to <.I,,) and <.I,) is measured, the experiment is 
repeated many times with different values of t1 , and the 
Signal is Fourier transformed with respect to t1 to pro­
duce the multiple-quantum spectra. In this work it will 
be assumed that the initial condition is {31. and that only 
the operators corresponding to magnetization at the end 
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of the mixing period V are detected. The use of co­
herently excited initial conditions and the implications of 
selective excitation for full two dimensional NMR ex­
periments will be discussed elsewhere. 

In the simplest experiment, U and V are nonselective 
as shown in Fig. 7(b). The first two pulses, separated 
by a time T p , constitute the preparation sequence. If 
we further assume that aU pulses are strong pulses, 
so that the internal spin Hamiltonian Je. = I:l.wI. +JCD,u can 
be neglected during the short intervals that the rf field 
is present, we can write the reduced density matrix at 
the end of the second pulse as 

p = t3exp(- iIy1f/2) exp(- iH. Tp) exp(iIy1f/2) I. exp(- iIy1f/2) 

xexp(iH. Tp) exp(iIy1f/2) = t3exp(iH,. Tp)I. exp(iH,. Tp), (26) 

where 

Je", =l:l.wI", +JeD,,,,,,, (a=x, y, or z) , (27) 

Because the dipolar Hamiltonian is bilinear, P will 
have multiple-quantum matrix elements if II JeD, .. T p II 

~ 1, in contrast to excitation by a single pulse which 
produces only single-quantum coherence. The third 
pulse and the final delay ta constitute the mixing and de­
tection sequence, and (I,,(ta» is measured. This pulse 
sequence, modified to include echoes to remove I:l.w 
and field inhomogeneity from the evolution time t1 , and 
phase shifted to separate the different n values, a(e), (d) 

is the one used for most multiple-quantum experiments. 

The dramatic decrease in intensity as n increases and 
the low intensity of individual transitions mentioned in 
the IntroduG!tion is now easily derived. To simplify the 
formalism, we note that there is actually a great deal of 
similarity between the preparation and mixing portions 
of the pulse sequence, which is hidden by the experimen­
tal need to measure (I,,) or (Iy) even though the initial 
density matrix is proportional to I •. 

IT we imagine instead that we observe ([.), as in Fig. 
7(c), we have to insert a fourth pulse at the end of fa. 
The sequences in Figs. 7(b) and 7(c) would always give 
exactly the same spectra, but in Fig. 7(c) the symmetry 
between preparation and mixing is apparent; in fact, if 
t2 = Tp , the propagators are identical: 

U = V =exp(- iIy1f/2) exp(- iH. Tp) exp(iIy 1f/2) • (29) 

We can write the observed signal as 

(I.(Tp , t1, t2 = Tp» =tr(PI.) 

= t3tr[ Vexp(- iH.t1) UI. Ut exp(iH. t1)V tI.] , 

(30) 

= t3tr[ (UI.U t ) exp(iH.t1)(VtI. V) exp(- iH.f l )] , 

(30 

=t3 ~ (UI.Ut)IIIn(UtI.U)nlll e,wllln'l , (32) 
IIIn 

where WOlIn is the energy difference between the states 

m and n. The maximum signal is obtained when 
I (UI.Ut)mnl = I (UtI.U)nm I for every matrix element, and 
it can easily be shown that the condition is satisfied if 
U has the form in Eq. (29)18; in fact, for this sequence 
(UI.Ut)mn = (UtI"U)nm' Therefore, the intensity of the 
multiple-quantum transition at the frequency wmn is equal 
to t31 (UI.Ut)mn 12 assuming that all peaks are resolvable. 
The total intensity of the spectrum, which is divided 
among all the orders of multiple-quantum tranSitions, 
is equal to t3Tr[ (UI"U t )2]. However, this quantity is 
invariant to unitary transformation and is the same as 
the integrated intensity of the single-quantum spectrum 
in a conventional one-pulse experiment t3Tr(I~). There­
fore, the total spectral intensity of the nonselective ex­
periment is fixed. 

IT the multiple-quantum matrix elements are inef­
ficientlyexcited (for example, if II JeD,uTpll «1), UI.U t 

has large matrix elements along its diagonal. These 
matrix elements are populations, so they do not eVOlve, 
and most of the intensity of the multiple-quantum spec­
trum is found at w =0. An efficient wide band nonselec­
tive excitation has little intensity at w = 0, and excites 
all of the possible transitions about equally. Therefore, 
the average intensity of a Single line in a multiple-quan­
tum spectrum is smaller than the average intensity of a 
single line in an ordinary single pulse experiment, by a 
ratio (number of single-quantum transitions)/ (number 
of excited multiple-quantum transitions). When there 
are many spins, the intensity of a single transition be­
comes extremely small. For example, a system with 
N spins i and no symmetry has 22N possible distinct 
matrix elements, so totally nonselective excitation gives 
a signal for each transition of 2-2N[t3tr(I~)]. 

IT only certain orders of multiple-quantum transitions 
are eXCited, but the excitation is still efficient (in the 
sense that the peak at w =0 is small), the intensity of a 
single transition grows. For example, if the resonance 
offset is removed from the excitation and detection 
periods (by echoes, for example), H" retains only zero­
and two-quantum operators, and only even-quantum co­
herences are excited. 6 Since roughly half the coherences 
are even quantum, this process increases the intensity 
of an average even quantum transition by a factor of 2. 
IT only a few transitions are excited (by an extremely 
selective sequence) and the sequence is efficient, the 
intensity of each transition could be enormous. Suppose 
that selective excitation is used for both preparation and 
mixing as in Fig. 7(d), and that UI.U t and VI. V t could 
be prepared with all the matrix elements zero except for 
the single coherence with I:l.m = +N and the single coher­
ence with I:l.m = - N. In that case, the signal gain relative 
to the nonselective experiment would be 22N-1• However, 
the p,ensity matrix that results is not related to the initial 
condition I. by a unitary transformation, and therefore 
it cannot be produced by any sequence that does not in­
clude relaxation. 

A more reasonable estimate of the maximum possible 
gain is obtained by finding the maximum possible value 
of (UI.Ut)ab' where la) is the single state with m =+N/2 
and I b) is the single state with m = - N/2. We have 
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(33) 

(34) 

L Uai(Ubl )* = (jab' (35) 
I 

The maximum can be readily seen to be Uaa = 1/v'2, 
Uab =l/.f2, Ual=O, Uba =-l/.f2, Ubb =l/.f2, and Ubi =0. 
The phases are not unique. Such a propagator concen­
trates the matrix elements of U in the states with the 
largest values of I mi. It couples states I a) and I b) 
only to each other, effectively creating a two-level sys­
tem. The two-level system has 

U= (1/.f2 1/.f2) 
-1/.f2 1/.f2 

where I~b is a fictitious spin-% operator for multiple­
quantum coherence. 10 

Thus, the maximum possible signal is obtained by a 
selective 90° pulse, shown schematically in Fig. 8. The 
Signal from this transition is, from Eq. (32), (I!)aa' 
The gain when compared to totally nonselective excita­
tion is then 

G N =[W!)aa] /[,n- 2N tr(I~)] 

=f3 (N/2)2/f32-2N (N2N/4) =N2N • (37) 

To achieve this gain, we need a sequence that couples 
the state m = N /2 only to the state m = - N /2. The ef­
fective Hamiltonian for this sequence should be some 
linear combination of I~b and I:b. This sequence would 
be used to create Ul.U t and VI .. V t • If the effective 
Hamiltonian has this form for m =±N/2, it can have any 
form whatsoever for the other levels, and the signal in 
the N-quantum transition will be unaffected. 

Often the (N -l)-quantum or (N - 2)-quantum transi­
tions in an N-spin system are more interesting than the 
N-quantum transition, since the N-quantum transition 
contains no dipolar information. If (N -l)-quantum 
selection on I. is used, the number of transitions in­
creases to 2N for a system without symmetry. In ad-

lz 

90· N-quantum 
pulse about x-axis 

lz 

...J----_ 1y 

FIG. 8. Schematic illustration of the effect of N-quantum 
selective sequences, in terms of an effective two-level sys­
tem involving only m =:1: N/2. A selective 90· pulse transfers 
the entire population difference between those two states into 
N-quantum coherence, giving a gain relative to nonselective 
excitation of N2N (see text). 

T ABLE I. Enhancement of high multiple­
quantum transitions, using selective se­
quences. Sequences which select only N 
quantum [or only (N -1) quantum] are illus-
trated in Fig. 4. .' 

N Symmetry G N 
G

N
_
1 

2 None 8 1.14 
4 None 64 6.10 
6 Benzene 47.5 17.2 
6 None 384 32.7 
8 None 2048 154 

10 None 10240 683 
12 None 49152 2922 
14 None 229376 12269 
16 None 1048576 50892 
18 None 4718592 209409 

dition, while it is possible to envision a 1T/2 pulse on 
a two-level system completely depleting the population 
difference, in a multilevel system it is very unlikely that 
all population differences can be eliminated simultaneous­
ly. Thus, we expect to also produce zero-quantum 
transitions and populations in the m =±N/2 and m =± (N/ 
2 -1) manifolds, effectively increasing the total number 
of pumped matr ix elements to 2~ + 2. Now, however, 
the available fraction of I~ is larger. The result of all 
of these effects is 

GN_1 ={f3[2(I:) ... NI2 +2N(I~)"=NI2-1]} / 

x(2N2 +2N + 2)[f32-2N Tr(I!)] 

=2N(N 2 _3N+4)/(N2 +N+1)o::2N , for N»l. (38) 

Values of G N andGN_1 for systems without symmetry 
are listed in Table I. If symmetry is included, all gains 
are reduced, because fewer transitions are allowed and 
therefore the system is effectively a collection of 
smaller systems. All of our calculations are still valid, 
except that the number of density matrix elements ex­
cited and the available fraction of I~ should be recal­
culated using the known symmetry. In general, N-quan­
tum and (N -i)-quantum transitions must have Al sym­
metry, since the states with m =±N/2 have that sym­
metry. The relevant energy level diagram is not a 
binomial distribution but instead is the group of A1 
states. The calculations are straightforward, and 
benzene has been included in Table I to illustrate sym­
metry effects. 

These gains become extremely large for large N. 
However, the single N -quantum transition contains only 
a tiny fraction of the total intenSity in the nonselective 
experiment, and therefore we should calculate the total 
signal available in the N-quantum and (N -1)-quantum 
transitions with and without selectivity. This calcula­
tions is done in Table II. We assume that the total num­
ber of protons in the sample is kept constant as we change 
N, and calculate the signal size as a fraction of the total 
magnetization of the sample. The signal size still decreases' 
as N increases, but the decrease is much slower in the 
selective experiment, and Table II indicates that selec­
tive excitation should dramatically increase the number 
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TABLE II. Intensity of high multiple-quantum transitions, 
with and without selectivity, relative to total magnetization of 
the sample. 

IntenSity (in percent) 

N Symmetry Nonselective xGN xGN-I 

6 Benzene AI 0.197 9.38 3.69 
6 None 0.024 9.38 0.80 
8 None 1.5x10-3 3.13 0.24 

10 None 9.5x10-5 0.98 0.065 
12 None 5.9x10-6 0.29 0.017 
14 None 3.7X10-7 0.085 4.5 x 10-3 

16 None 2.3 x 10-8 0.024 1. 2 x 10-3 

18 None 1. 4 x 10-9 0.0069 3.0 x 10-4 

of molecules which could be studied by multiple-quantum 
spectroscopy. However, the results in Tables I and n 
were calculated by assuming that a perfectly selective 
experiment is possible. Since any actual experiment 
will deviate from this ideal, we must now consider se­
quences which are not selective to infinitely high or­
der, and which can have other errors. 

IV. EXTENT OF SELECTIVITY IN NON IDEAL 
SELECTIVE SEQUENCES 

A. General systems 

As mentioned earlier, for any multiple -pulse sequence 
one expects II :reIn) 11:5 II XlIIt IIn+lt ~. In a selective sequence, 
X. is formally equivalent to JCillt(t), as illustrated in Fig. 
5. Therefore, as IIX.tell- 0, :re(O) becomes the dominant 
term of JC. The nonselective terms of U = exp[iJC(Nte )] 

can be made arbitrarily small in principle by making te 
very short, while if Nte is kept constant the selective 
contribution from ;re(O) is unaffected. In practice, the 
attainable selectivity is limited by several factors. 

(1) For technical reasons, te cannot be made arbi­
trarily short. For example, if each subcycle requires 
pulses with specified flip angles, each pulse has a finite 
width which depends on the strength of the exciting field. 

(2) The time required to pump multiphoton coherences 
is generally dependent on the "anharmonicity" of the 
energy level spacing. The excitation sequence needs to 
extend for a period comparable to the inverse of the an­
harmonic frequencies, which in the last section were the 
dipolar frequencies. This problem was investigated in 
depth in the last section; one solution is to construct a 
subcycle with an effective Hamiltonian II X. 11« II Xillt II, 

so that IIX.tell can be small even though IIXillttell is not. 
If this is not pOSSible, the general considerations of the 
preceding section still hold, but to retain selectivity the 
subcycles would need to be shorter, and cycles selec­
tive to higher order would be needed to obtain high quan­
tum operators. 

(3) Because there is a lower limit to the length of a 
subcycle, the minimum time needed for aj-order nk­
quantum selective sequence increases rapidly as j in­
creases. However, relaxation mechanisms make the 
average Hamiltonian calculation invalid if the total length 
of a sequence is comparable to T2 , the coherence de-

phasing time. Thus, for any system only a finite order 
of selectivity is possible. Inhomogeneous systems are 
a special case; excitation designed to compensate for 
such broadening may allow homogeneous selective ex­
citation. 

(4) Timing errors, inaccurate phase shifts, or other 
failures in control over coherence will reduce the selec­
tivity of any sequence. 

In this subsection we discuss the limitations for gen­
eral spectroscopic systems. In order to estimate the 
importance of the first three problems listed above, we 
Calculate in the Appendix the size of the first non-nk­
quantum selective operator from a j-order nk-quantum 
selective sequence, which is (- tiC(J+1I te )lIlIO, and we de­
termine plausible conditions for convergence of the aver­
age Hamiltonian expansion. Only the results will be 
summarized here. We combine phase cycling and sym­
metrization into one operation, which turns a (j - 2)­
order nk-quantum selective subcycle into a j-order nk­
quantum selective cycle requiring 2n subcycles [Fig. 
2(b)], assuming perfect phase shifts and no timing er­
rors. The norm of the first nns term for the cycle, 
which is (:Je<J+1l)1III&' is shown in the Appendix to be re­
lated to that of the first nns term of the ith subcycle, 
which is (:re~J-1) )11118 : 

II (X(i+llte)
lIII8

ll-F(n) II (:ie(O)te)21111 (Xii-1I te)
1I1IS

1l (39) 

F(n) = h\n5 -in3 +in)1/2/8n3 -0.09n-1/2 • 

If a (j - 2)-order selective subcycle were repeated 2n 
times without phase shifting in between, the first non­
selective term would be Xi1;~te; the first nonselective 
term in the j -order selective sequence is smaller than 
this only if II (X(O)te )2 I1F (n) < 1. This result suggests that 
the average Hamiltonian expansion fails to converge 
when II(X(O)te)211~F(nrl. Thus, we require 

II (JC<O)te )211 <F(nT 1 • (40) 

Values of F(n) are listed in Table m. 
Equation (40) can be used (j -1)/2 times, to express 

(:re(i +11 )l1li8 in terms of (X(2) )IIIIS for a first-order selective 
sequence. (X(2)11118 can then be calculated using Eq. 
(16). We define the selectivity S of a j-order nk-quantum 
selective sequence to be the ratio between a typical ma-

TABLE III. Values of F (n) = [(8/15)n 5 

- (2/3)n 3 + (2/15)n)1/2/8n3 and [F (nlrl. 
As long as II (;re<O) tc)211 < [F (n)r1 the 
average Hamiltonian expansion is 
expected to converge rapidly. 

n F(n) F(nr1 

3 0.090 11 
4 0.044 23 
5 0.036 27 
6 0.032 31 

10 0.029 35 
12 0.026 38 
14 0.024 41 
16 0.023 44 
18 0.022 46 
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FIG. 9. Modification of the symmetrized sequence of Fig. 4(b) 
to include phase errors 0i and timing errors "i' We assume, 
without loss of generality, that ("i) = (oi) = o. 

trix element of XeD) and a typical matrix element of 
(X<J+1»""". At the limit of convergence [II X(D)tell-F(nt1] 

we find 

S =K-1F(n)I/2(2n)(h "7/4) 

(41) 

where K is defined as the total number of allowed transi­
tions divided by the total number of nk-quantum transi­
tions, and 0/ is defined by the relation II JC. 112 = 0tK II XeD) 112 
[see Eq. (20)]; the reason for the definition is that if all 
the matrix elements of JC. have roughly equal magnitude, 
0/-1. 

To go further, we need to know the relative sizes of 
IIX(D)II, II(X(D»)2I1, and II(X(D»)3 11 • If the eigenvalues of 
XeD) have a Gaussian distribution, we know from Eq. (7) 
that II (jC(D»)2 11 = V3l1x(D) 112 and II (X<D»)SII =ffillX<D) liS. An-

other possibility is that the energy levels might be 
spaced so that 3Co has only two transitions which are 
nearly resonant, forming an effective three-level sys­
tem, and XeD) contains a nonzero matrix element for only 
one of these transitions; in this case NT = 3, and if XeD) 
is traceless, we expect II (X(D) I'll = (3/2)("-1) /2I1X(D) II" • In 
both cases II (X<D) I'll does not grow greater than II X(D») II" 
very rapidly. However, if K» 1, so that only a very 
small fraction of the matrix elements of JC. are selected 
by X(D), we may have II(X(D)1'II- (N

T
)("-1)/2I1X(D) II"; this 

case and the case of a Gaussian distribution will be dis­
cussed iIi the next section in connection with multiple­
quantum NMR. 

The factor (2n)J2/4+7/4 makes S grow very rapidly as 
j is increased, and fairly small values of j still give 
very selective sequences. For example, if a Gaussian 
distribution of eigenvalues is assumed for X(D), the 
selectivity of a third-order 10k-quantum selective se­
quence with 0/-1, K-n, and F(n) =0.028 (from Table 
III) is S = 1170; a typical selected matrix element is more 
than three orders of magnitude larger than a typical 
nonselected matrix element, even near. the limit of con­
vergence. When II (X(D) te )2 II «F(n)-I, S will be much 
larger; in general, if II (X(D)te) II is scaled down by a fac­
tor of A, II X(" +1) te " ... is scaled down by a factor of 
AI +2, and S increases by a factor of AI +1. We conclude 
that for many systems the use of cycles with only a 
finite order of selectivity is entirely satisfactory. 

The effects of timing errors and imperfect phase shifts 
are more serious. Suppose that the length of subcycle 
i is t:..Tp + Oi' and that the phase is cf>, + E:" where L i 0, 
=L,E:,=0(Fig.'9). Then 

(42) 

which is no longer purely nk-quantum selective; the ma­
trix element for an m -quantum transition is multiplied 
by 

-2:- L(t:..Tp+oJ)exP[im(cf>IH/)] 
n~Tp J 

(43) 

instead of O. Assuming OJ«t:..Tp and E:/«l, we can ex­
pand this out: 

_1_ L (t:..Tp +Oi)exp[im(cf>i H,)] 
2nATp 1 

= -2 1 [LATpexP(imcf>I)+Lo,exP(imcf>,) 
nt:..Tp 

+L(ATp)(imE:l)exP(imcf>,)+."] . (44) 

The first term on the rhs corresponds to an ideal se­
quence and vanishes if m is not a multiple of n. If E:I 
and 01 are uncorrelated with cf>" the last two terms re­
duce to (2ntl/2[(0~)/t:..T:)+m2(G)]1/2. If the number 
of subcycles increases (for example, by going to a high­
er-order selective sequence), this term decreases, so 
that the ratio II XeD) "selectln 1 II XeD) 11"118 can be made ar­
bitrarily large. However, if E:J or 01 are completely 
correlated with cf>1 (so that, for example, every time the 
phase should be cf> = 0 it is actually cf> = t:o), II XeD) " •• lectlve 1 
IIX(D) 11"118 is not reduced by increasing the order of the 
sequence. Such a situation arises with a miscalibrated 
phase shifting device or for one in which a digital ap­
proximation is made to the exact setting. One way to re­
duce this error is to use two (or more) phase shifting 
deVices, so that the total error is not well correlated 
with the total phase. 

B. Application of nonideal selective sequences to 
multiple-quantum NMR 

As mentioned earlier, an ideal N -quantum sequence 
that had no zero-quantum matrix elements could en­
hance the single N-quantum transition of an N-spin sys­
tem by a factor of N2 H• A nonideal nk-quantum selec­
tive sequence (which has zero-quantum matrix elements) 
will not work as well, for two reasons. First, there may 
be nonzero matrix elements for the populations of the 
states m =±NI2 (populations may be thought of as a 
special type of zero-quantum coherence, with the initial 
state identical to the final state). In this case, the ef­
fective Hamiltonian for the two levels will be a",!:6 + 
a,t;6 +a.I:6 (Fig. 10) instead of containing only 1:6 and 
1;6. Depending on the relative size of the coeffiCient 
a., it may be impossible to transfer population com­
pletely into coherence. Statistically, we expect the 
coefficients to be of comparable size and in that case 
much of the population can be transferred into coherence. 

A much more serious effect comes from the require­
ment that the average Hamiltonian expansion converge. 
In general, this would imply II (x(D)te )211 «F(n)"l. For 
the sequences described, the distribution of eigenvalues 
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FIG. 10. Schematic illustration of one effect of zero-quantum 
coherences on an N-quantum selective sequence. The sequence 
causes the population difference between the states m =± N!2 to 
be rotated about an arbitrary axis, and complete transfer of 
population difference into coherence may be impossible. Com­
pare this to Fig. 8. 

of Jee is expected to resemble that of the eigenvalues of 
JeD •• , which will be Gaussian if N is large. It is rea­
so~able to assume that the eigenvalues of X(O) have a 
Gaussian distribution, since X(O) has many allowed 
zero-quantum transitions, and since the limit of X(O) as 
T - 0 for Fig, 6 (a) is JeD,.. • The convergence criterion 
of Eq. (41) can then be written as II X(O)tc II «3-11 4F(n)"lI 2 

- 2.1 (nll 4). 

From the definition of the norm of a 2N by 2N matrix 
we find 

II X(O) tc II = {2-N tr[ (X(O) tc)2] FI 2 

= (2- N f,; IX(O)tcl!n r/2 

- .fN. 2-N 12 ( 1 X(O) t 12 )1/2 - s c mn , (45) 

where N. is the number of possibly nonzero matrix ele­
ments, and the rms average only includes those ele­
ments. Therefore, to make an average excited matrix 
element comparable to 1 (which is needed if we want the 
effect of X(O) to approximate a selective 90 0 pulse be­
tween the levels m =±N/2) we need 

(,' I·T·I·::.
m 

I·:: I': I· .. ·....·· ..................... ·······GJ 

(b) 

(46) 

There are 22N possibly nonvanishing matrix elements 
for a nonselective sequence, and if only zero-quantum 
and N -quantum elements are excited, N s - 2ZN N-ll 2, 

For N'?2, Eq. (46) cannot be satisfied. Assuming 
II X(O) tc II -1, we expect 

«X(O)tC)~b)1/Z=2NIZ/~1/42N« 1. (47) 

This scales down the possible gain because the selec­
tive sequence effectively produces only a small rotation 
instead of a 90 0 pulse. In fact, 

1 (UI. U t )4b (VI. Vt)ba 1- (N1I 4/2NIZ )Z(I.);.NI 2 

= (m2- N
) ( ~2) (48) 

so the gain is 

G' = [/3&2-N (I~)".NI zJ/ /32-ZN tr(I~) =N31 2 • (49) 

This value of G' is only approximate, since it depends 
on the exact maximum permissible value of IIX(O)tc"' 
The gain can be assinged to two effects. Only -1/m 
as many transitions are being pumped so each one is 
m times stronger; in addition, the N-quantum transi­
tion receives intensity from the equilibrium population 
difference of the extreme states for which the expecta­
tion value of I~ is NZ/4, a factor of N greater than the 
expectation value averaged over all states, While this 
gain is large, a much larger gain is possible if N scan 
be reduced. 

C. Removal of O-quantum operators from selective 
sequences 

The gain can be increased if the zero-quantum co­
herences are removed from x(O) , One, way to do this is 
with the sequence shown in Fig. l1(a), The phase shift 
of w/N inverts the N-quantum coherence but leaves the 
zero-quantum coherence invariant, and the time re-

(,' ='-~D ~ DTD~ [0: 0':0' ~ Ot) 
FIG. 11. Sequences to select only N-quantum, 3N-quantum, ... , (2k + lIN-quantum coherenoes. (a) General sequence. Note 
that:Je. is inverted after every subcyole, and that the phase shift is tP = ,"iN, instead of tP = 2'1r!N as in Fig. 4. (b):re" and:re", can 
be formed with the pure double-quantum sequence [part (c»), which is inverted by a 'Ir/2 phase shift. 
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versal inverts every order of coherence, so the net re­
sult is that zero-quantum coherences are inverted every 
subcycle but N-quantum coherences are unaffected. The 
lowest-order average X(O) for the sequence in Fig. 11 (a) 
contains only N-quantum, 3N-quantum, .•. , (2k + 1) N­
quantum coherences after 2N subcycles. In an N-spin 
system, this makes N s « 2N

, condition (46) is satisfied, 
and the ideal gain GN =N2N of Table I becomes possible. 

The easiest way to design such a sequence for 3C. is 
shown in Fig. 11 (b). Jr" -Jr" 3C .. , and -3C .. are all 
generated from the double-quantum sequence, mentioned 
earlier and illustrated in Fig. 11 (c) with relative phases 
0, 1T/2, 1T/4, and 31T/4, respectively. If 113C .. ~7~ II «1, 
only the N-quantum transition appears. However, the 
value of K = 113C.1I / II X(O) II is now very large (J( - 2N) so 
the selectivity S from Eq. (41) will be somewhat weaker, 
and should be reconsidered. High-order selective se­
quences with no zero-quantum contributions can be 
generated from Fig. 11 (a) in exactly the same way that 
high-order selective sequences with zero-quantum con­
tributions were generated from Fig. 4(a). A third-order 
10-quantum selective sequence requires (4N)2 = 1600 sub­
cycles [instead of (2N)2 =400 subcycles without suppres­
sion of zero quantum). Equation (41) applies if 
(2N)J2/ 4 +7/ 4 is replaced with (4N)J2/4+7/4 and N is re-
placed with 2N, since each symmetrized phase cycling 
now requires 4N subcycles. 

The assumption of a Gaussian distribution of eigen­
values is no longer valid, since X(O) has only two non­
zero matrix elements. Since x(O) is Hermitian, the two 
elements have the same magnitude ~ R. The eigenvalues 
are ±~ R, and 0 for all other states, because X(O) is 
traceless. Therefore, 

II X(O)tell =[(2-N)(2)(R2/4)]1/2=R2-(N+l)/Z , 

II (X(O)te)Zn =[ (2-N)(2) (R4/16 »)11 Z 

=RZZ-(N+3)/z=2(N-U/zIIX(O)teIl Z , 

II (X(O)te)311 = [(2-N)(2)(R6 /64»)1/z 

=R32-(N+5)/Z = 2(N- U II x(O) tell 3 • 

(50) 

(51) 

(52) 

In the limit of convergence [1I(X(O)te)2 11 - F(nt1) we find 
the calculated selectivity of a third-order 10-quantum 
sequence with a=l, K=22N-1, and F(n) =0.029 Lsee Eq. 
(41)] to be S=0.025. However, we do not really need 
to have lI(jC(O)te )2 11 be this large; all we really want is 
Rte = 1T/2, so II(X(O)te)2 11 =0.027, a factor of 1797 smaller. 
When II (jC<O)te )211 has this value, we find S=8.0x104• 

We can attain the maximum gain G if the 4(2N - 2) 
non-N-quantum selective matrix elements that involve 
the m =±N/2 states transfer only a small fraction of 
a!)", .. N/2 relative to the fraction transferred by the two 
N-quantum selective matrix elements. Since each selec­
tive matrix element is larger by a factor S, the intensity 
of the selected transition [from Eq. (32)] is larger by a 
factor S2, and we require 

2S 2» 4(2N - 2) , 

S2» 2N+l -4, 
(53) 

which is satisfied in this example. We therefore con-

clude almost all the theoretical gain from an infinite­
order selective sequence is attainable with a third-order 
selective sequence, and the potential gains in Table I 
should be apprOXimately realizable. 

Note that the theoretical maximum gain becomes more 
difficult to achieve as N increases, for several reasons. 
From Eq. (53) we see that the required selectivity for 
maximum gain is proportional to (..f2)N, and therefore 
high-order selective sequences may be needed. How­
ever, the number of subcycles cannot be increased in­
definitely, because each subcycle must have a minimum 
duration, and relaxation effects limit the maximum 
duration of the cycle to less than T z • Typically, I13CD ... 1I 
-10 kHz and T 2 -100 ms for liquid crystal systems, so 
no more than a few thousand subcycles would be possible; 
a third-order 18-quantum selective sequence that 
eliminates zero-quantum requires (4n)2 = 5184 subcycles, 
and therefore is impossible for many molecules. In ad­
dition, sample heating becomes a serious problem when 
many pulses are applied. 

V. CONCLUSION 

On the basis of the calculations presented in this 
paper and experimentat results reported elsewhere, 7,17 

we believe that selective excitation will increase the 
number and size of molecules which can be studied by 
multiple-quantum NMR. We also expect that this ap­
proach to selective excitation of coherence and selective 
population inversion will be useful in a variety of sys­
tems. 
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APPENDIX 

In this Appendix we calculate the size of the first non­
nk-quantum selective operator from a j-order nk-quantum 
selective sequence, which is (- zjC(J+Ute)us' 

To simplify ,the calculations we combine phase cycling 
and symmetrization into one operation, which turns a 
(j - 2)-order nk-quantum selective subcycle (j odd) into 
a j -order nk -quantum selective cycle requiring 2n sub­
cycles [Fig. 4(b»), assuming perfect phase shifts and no 
timing errors. This will allow us to write jCu +U. As 
in our earlier calculations, we expand the propagator for 
the j-order nk-quantum selective sequence in powers of 
te' The first nonselective term is zjC<J+Ute, which is 
proportional to teU .2). All other terms proportional to 
t ~+2 are nk-quantum selective, so the only possible nns 
term proportional to t~J+2) is (ix< J+Ute) ..... The product 
of the propagators for the subcycles has several terms 
proportional to (tel)J +2 = (tc /2n) J +2; they are 
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(At) 

(A2) 

_! "(:iC0) J'Cw +jC(J) jC(O»f:. 
2 y I I I I cl (A3) 

" (:reU ) J'C(J-1) +w(J-1) :re(1) t 2 - L.... I J ""I J cl (A4) 
1< J 

(A5) 

+ [i L t~, + (i/2) L t~, + (i/2) L t~IJ 
I > J > k I.J > k i> J =k 

Cie~O)J'C~O)JC~J-1) +J'C~O)J'C~J -1) Je10) +J'C~J-1) J'C~o) J'C(O» (A6) 

+ (i/6) " t S (J'C(O)J'C(O)J'C<i -1) +J'C(0)J'C(J-l):re(0) L." cl I J I I I 1 
i 

(A7) 

+ terms which are not proportional to (tc)i+2. We will assume 
that the subcycles are themselves constructed by phase 
cycling and symmetrization, so that J'CIJ~2J') = 0 for all j', 
and terms (A2)-(A5) vanish. In addition, terms (At) and 
(A7) are unaffected by a phase shift of cf> = 21T/n, so they 
are nk-quantum selective. Finally, term (A6) contains 
many nk-quantum selective portions; for example, 
L: i=J<kJ'C~O)J'CjO)J'C!J-1) is nk-quantum selective if i and j 
are in the first half of the cycle and k is in the second 
half. As another example, if i =j = 1, the nns part of the 
summation L: k>l J'C1°)J'C1°)jCkJ-l), which contains (n - 1) 
terms, is the same size as a single term, since 
[ (JC1°)J'C1°) )( L: k jC!J-l) )]n .... = O. Straightforward but tedious 
counting of the remaining terms, assuming that their ma­
trix elements add randomly, gives 

II (J'C(J+1)tc)ll~ns - F(n)2(11 (J'CIO»2JC~J-1)11 )2t~ , 

F(n) = (fsn5 - ~ n3 + -bz)1/ 2/8n3 - O. 09n- 1/ 2 • (A8) 

The construction of the subcycles implies J'C~O) =J'CjO) 
and II J'C~J-1) II = II J'C~J-1) II, and therefore ( II (jC~O)Z)jC~J-1) liZ) 
- ( II J'C~0)jC~J-1)jCkO) 112) - ( II jClJ-1) (jCjO) )2 liZ ). We expect to 

find 

so 

(A9) 

Since jCw is proportional to t ~, we expect that if tc 
is .. small," II J'C(J +1) II » II jCU +3) II (we assume the cycles 
are symmetrized, so that jC(i +Z) vanishes) and if tc is 
"large," II jC<i +1) II « II jCo +S) II. We are interested in 
finding the value of tc which makes II jC(J +1) 11- II J'C(J +3) II; 
if we make tc much smaller than this critical value, we 
expect to find convergence. 

Assume that we have a (j -2)-order nk-quantum 
selective subcycle which is known to converge, so that 
II jC(O) II » II J'Cj2) II and II J'C~J-1) lI ... a» 1I;re~i +1) IInna. To create 
a j-order nk-quantum selective cycle we need to in­
crease the cycle time by a factor of 2n. We have cal­
culated II JCU +1) IInllll by examining the term in the propa­
gator proportional to t ~ +2. The largest nns terms pro-

portional to t ~ +\ under these assumptions, are 

{_ treu +3) tc + t it~ [(;re(J +1) )(J'C(O»Z +;re(0);re<i +1) J'C(O) 

+JC(i +1) (;re(O) )2] ons} = L i(J'C~i-1) ;re}O)jC!O);re:O)jC~O) 
l>i>k>l>m 

+permutations)nD!t~, + small terms. (Al0) 

Again a substantial fraction of the rhs cancels or is 
forced to be selective. Most of the remaining terms on 
the rhs cancel with terms such as ;re(J +1) (J'C(0»2 on the 
lhs. The result is that, if II (J'C(O)tc)Z 11-1, we expect to 
find II jC(J +S) IInns < II JCU +1) Iinns. Thus, if we have a con­
verging (j - 2)-order nk-quantum selective sequence, we 
expect to retain convergence for the j-order selective 
sequence if II jC(O) ta II «F(n)-l. 

As mentioned, we can use Eq. (A9) iteratively, to cal­
culate the first nns term as a function of successively 
lower -order terms. To begin the iteration, however, 
we need an expression for II jC(Z) lions for a first-order 
selective sequence [Fig. 4(b) with JCq, nonselective]. We 
have shown that [Eq. (16)] 

(jC(Z) )0 .... = (i/tc) [ ft::o dts (:0 dtz 

x f tz dt1JClot(ts)JClot(tz)JClot(t) • 
t~O ~o .... 

:!Clot in this expression is JCq" as discussed in relation 
to Fig. 5. We can rewrite this as 

x (JCq, (I)JCq, (J) JCq, (k) )0 .... , 

where cf>(i) is the value of cf> during the ith subcycle. 
Since the operators JCq,(i) are nonselective, only a few 
terms in the summations are forced to be nk-quantum 
selective (note, however, the sum with i =j =k is nk­
quantum selective, as are a few of the terms in the other 
sums). We divide the possible values of i, j, and k into 
two sets: 

(a) i and j are both in the first half of the cycle and k 
is in the second half, or i is in the first half and j and k 
are both in the second half. In this case the sum over 
the isolated index reduces to nJ'C(O) . 

(b) i, j, and k are all in the same half of the cycle. 
In this case no further reduction is possible. By con­
structio~ of the sequence, IIJCq,w II = 1I~q,(J) II. If we as­
sume (II JC(O)JCq, JCq, II) =( II JCq, ()JCq, :!C(O) II), straight-

(/) (i) I (J) 
forward algebra then gives 
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Let IJC.(j)"2 =aKIX(O) 112 (see Sec. IV.A). We can 
now write 

(A12) 

II[(JC.(2nAT,)]211::::l and II (X(O) (2n)(J+1)/2 AT,)211 «F(nr1 • 

The size of the first nonselective term II JCU +1) II"IIS is 

We want the first-order sequence to converge. If 
II[JC.(2nAT,)]2 11 -l, we see that II X(2) AT, II ... «1. Com­
bining this with our earlier results, we expect a j-order 
nk-quantum selective sequence which is constructed from 
~(j +1) phase cycles and ~(j +1) symmetrizations [and 
therefore has a cycle time tc = (2n)(J +1) 12 AT,] to converge 
if 

II XU +1) II "lIS (2n)U +1) 12 AT, ~F(n)ll X~J-1)II" .. 1I (X(D»)211 (AT ,)3(2n)3(J +1) 1211 x(J +1)11" .. ~ F(n)1I X~J-l)1I1l1III II (X(O) AT ,)211 (2n)J +1 

=F(n)211 X~J-3)1I" .. 1I (X(O) AT ,)211 2(2n)(J+1)+'}-1) =[F(n)](}-1) /2 11 X~2)1I" .. II(JC(O) AT ,)211 (J-1)/2(2n)h 4+J-514 (A13) 

and II JC~2) II"IIS is given in Eq. (A12), so 

II X(J +1)11 DII8 :::: F(n)(J-1) 1211 (X(O) AT ,)211 (J -1) 12(2n)PI 4+J-51 4(1/ AT,) [n 2 ~K2I1lC(O) AT, 11211 (X(O) AT ,)2112 

We define the selectivity S to be K 1/2 I1X(O) II /1I~+1) II, 
which is the ratio of a typical nonzero matrix element 
of X(O) to a typical nonzero matrix element of (Xu+1»"IIS' 
We would like to calculate S as X(O) tc approaches the 
limit of convergence, which is II (:iC(O)tc)2 11 - F(n)-l. Since 
tc = (2n)(J+l)/2 AT" II (X(O) AT ,)211- (2n)-(J+1) F(n)-l, and 

S =K 1/2[1 x'O)"1 II XU +1)11 "l1li =K-1 F(n)1/2(2n,r14 +7/4 

x [~;t + nl~ (F(n)1I (X(O)tc)311 III X(O)tc 11)2] 1/2 • 

(A15) 

Equation (A15) is the same as Eq. (41). 
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