SQUID-detected liquid state NMR in microtesla fields

TitleSQUID-detected liquid state NMR in microtesla fields
Publication TypeJournal Article
Year of Publication2004
AuthorsTrabesinger A.H, McDermott R, Lee S.K, Mück M, Clarke J, Pines A
JournalJournal of Physical Chemistry A
Volume108
Issue6
Pagination957-963
Date PublishedFeb 12
ISBN Number1089-5639
Accession NumberWOS:000188831500005
Keywordswater
Abstract

Nuclear magnetic resonance (NMR) experiments performed in magnetic fields on the order of microtesla yield line widths comparable to the lifetime limit even in grossly inhomogeneous magnets. The potential loss in sensitivity is overcome by combining prepolarization in fields on the order of millitesla and signal detection with a Superconducting Quantum Interference Device (SQUID). The enhanced spectral resolution attainable in microtesla fields enables NMR studies of pure liquids and solutions without the need for strong magnets. We have investigated a variety of heteronuclear systems in both the weak and strong J-coupling regimes. Six different nuclear species have been detected with the same experimental apparatus. NMR signals of thermally polarized protons were obtained in fields as low as 554 nT.

URL<Go to ISI>://WOS:000188831500005
DOI10.1021/Jp035181g
Short TitleSQUID-detected liquid state NMR in microtesla fields
Download Publication: